The telomere repeat binding-factor 1 and 2 (TRF1 and TRF2) proteins of the shelterin complex bind to duplex telomeric DNA as homodimers, and the homodimerization is mediated by their TRFH (TRF-homology) domains. We performed molecular dynamic (MD) simulations of the dimer forms of TRF1TRFH and TRF2TRFH in the presence/absence of the TIN2TBM (TIN2, TRF-interacting nuclear protein 2, TBM, TRF-binding motif) peptide. The MD results suggest that TIN2TBM is necessary to ensure the stability of TRF1TRFH homodimer but not the TRF2TRFH homodimer. In TRF1-TIN2-TRF2 complex, the peptide enhances the protein-protein interactions to yield a stable heterodimer. Both monomers in TRF1TRFH homodimer interact almost equally with the peptide, whereas in TRF2TRFH homodimer, monomer TRF2TRFH(M1) exhibits more dominant interactions than the TRF2TRFH(M2). The common residues of TRF1/2TRFH(M1) that form interactions with TIN2TBM in all peptide-bound systems originate from the H3 (helix) and L3 (loop) regions. Additionally, in the homodimer systems, residues of TRF1/2TRFH(M2) also interact with the peptide. The residue pair E71-K213 is responsible for different conformations of TRF1TRFH homodimers; specifically, this residue pair enhances the protein-peptide/protein interactions in peptide-bound/unbound systems, respectively. TRF1TRFH and TRF2TRFH proteins have a conserved but different interface responsible for the protein-protein/peptide interactions that exist in the corresponding dimers.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.abb.2018.02.005
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2018