In the shipbuilding industry, the risk of brittle fracture of the structure is limited by using certified materials with specified impact strength, determined by the Charpy method (for a given design temperature) and by supervising the welding processes (technology qualification, production supervision, non-destructive testing). For off-shore constructions, classical shipbuilding requirements may not be sufficient. Therefore, the regulations used in the construction of offshore structures require CTOD tests for steel and welded joints with a thickness greater than 40 mm in the case of high strength steel and more than 50 mm in the case of other steels. Classification societies do not accept CTOD test results of samples with a thickness less than the material tested. For this reason, the problem of theoretical modeling of steel structure destruction process is a key issue, because laboratory tests for elements with high thickness (in the order of 100 mm and more) with a notch are expensive (large samples, difficulties in notching), and often create implementation difficulties due to required high load and range of recorded parameters. The publication will show results and conclusions from numerical modeling of elastic properties for steel typical for offshore applications.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.2478/pomr-2018-0057
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2018