The paper presents experimental and numerical investigations on novel prefabricated composite building wall panels for residential building constructions. The wall panels were composed of reinforced concrete ribbed elements with the core from the EPS foam as the thermal insulation. The wall panels in the full-scale 1:1 were subjected to vertical loads. In the first step, the experiments were analysed with simple usual static methods. Next they were analysed numerically using the finite element method based on two different constitutive continuum models for concrete. First, an elasto-plastic model with the Drucker-Prager criterion defined in compression and with the Rankine criterion defined in tension was used. Second, a coupled elasto-plastic damage formulation based on the strain equivalence hypothesis was used. In order to properly describe strain localization in concrete, both models were enhanced in a softening regime by a characteristic length of micro-structure by means of a non-local theory. A satisfactory agreement between the experiments and FE analyses was achieved. In addition, the FE results with the non-local approach were compared with the crack band model.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1080/19648189.2018.1474382
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020