Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Selected local stability problems of channel section flanges made of aluminium alloys

The paper addresses the issue of local buckling of compressed flanges of cold-formed thin-walled channel columns and beams with nonstandard flanges composed of aluminium alloys. The material behaviour follows the Ramberg–Osgood law. It should be noted that the proposed solution may be also applied for other materials, for example: stainless steel, carbon steel. The paper is motivated by an increasing interest in nonstandard cold-formed section shaping in local buckling analysis problems. Furthermore, attention is paid to the impact of material characteristics on buckling stresses in a nonlinear domain. The objective of the paper is to propose a finite element method (FEM) model and a relevant numerical procedure in ABAQUS, complemented by an analytical one. It should be noted that the proposed FEM energetic technique makes it possible to compute accurately the critical buckling stresses. The suggested numerical method is intended to accurately follow the entire structural equilibrium path under an active load in elastic and inelastic ranges. The paper is also focused on correct modelling of interactions between sheets of cross section of a possible contact during buckling analysis. Furthermore, the FEM results are compared with the analytical solution. Numerical examples confirm the validity of the proposed FEM procedures and the closed-form analytical solutions. Finally, a brief research summary is presented and the results are discussed further on.

Authors