The S1 excited state properties as well as the associated absorption and resonance Raman (RR) spectra of trans-porphycene are investigated by means of time dependent density functional theory calculations. The relative magnitude of the Franck-Condon (FC) contribution and of the Herzberg-Teller (HT) effects is evaluated for both the absorption and RR intensities. The accuracy of the calculated spectra is assessed by employing different theoretical approximations and by comparing with experimental data. The obtained results show that Duschinsky effects lead to noticeable modifications in the absorption intensities but are nearly negligible in the RR spectrum. By contrast, the HT effects are stronger for the RR intensities compared to the absorption intensities, and these effects significantly improve the agreement with the experimental RR spectrum. Moreover, the HT effects produce different values of the RR depolarization ratios, which can be used to quantify the relative importance of the FC and HT contributions. Generally, it is found that the HT effects have a significant role on the RR spectrum of trans-porphycene and that their inclusion in the computational scheme is mandatory to accurately predict the RR intensities.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1063/1.5023653
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2018