Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Automatic Clustering of EEG-Based Data Associated with Brain Activity

The aim of this paper is to present a system for automatic assigning electroencephalographic (EEG) signals to appropriate classes associated with brain activity. The EEG signals are acquired from a headset consisting of 14 electrodes placed on skull. Data gathered are first processed by the Independent Component Analysis algorithm to obtain estimates of signals generated by primary sources reflecting the activity of the brain. Next, the parameterization process is performed in two ways, i.e. by applying Discrete Wavelet Transform and utilizing an autoencoder network. The resulting sets of parameters are then used for the data clustering and the effectiveness of correct assignment of data into adequate clusters is checked. It occurs that the performance of wavelets- and autoencoders-based parametrization is similar, however in several cases, autoencoders allowed for obtaining a higher mean distance and lower standard deviation than distances provided by the wavelet-based method. Moreover, a supervised classification of signals is performed as a form of benchmarking.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1007/978-3-319-98678-4_47
Category
Aktywność konferencyjna
Type
materiały konferencyjne indeksowane w Web of Science
Language
angielski
Publication year
2018

Source: MOSTWiedzy.pl - publication "Automatic Clustering of EEG-Based Data Associated with Brain Activity" link open in new tab

Portal MOST Wiedzy link open in new tab