The paper concerns flexural buckling and initial post-buckling of axially compressed columns made of aluminium alloy described by the Ramberg-Osgood relationship. The non-linear differential equation of the problem is derived using the stationary total energy principle and the assumptions of classical beam theory within a finite range. The approximate analytical solution of the equation leading to the buckling loads and initial post-buckling equilibrium path is determined by means of the perturbation approach. Numerical examples dealing with simply supported and clamped I-columns are presented, the effect of the material non-linearity on the critical loads and initial post-buckling behaviour in comparison to linear one is discussed too. The analytical results are compared with the FEM solutions to present a good agreement.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.euromechsol.2018.10.006
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2019