Designing a tracking control system for an over-actuated dynamic positioning marine vessel in the case of insufficient information on environmental disturbances, hydrodynamic damping, Coriolis forces and vessel inertia characteristics is considered. The designed adaptive MIMO backstepping control law with control allocation is based on Lyapunov control theory for cascaded systems to guarantee stabilization of the marine vessel position and heading. Forces and torque computed from the adaptive control law are allocated to individual thrusters by employing the quadratic programming method in combination with the cascaded generalized inverse algorithm, the weighted least squares algorithm and the minimal least squares algorithm. The effectiveness of the proposed control scheme is demonstrated by simulations involving a redundant set of actuators. The evaluation criteria include energy consumption, robustness, as well accuracy of tracking during typical vessel operation.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.2478/amcs-2018-0052
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2018