convolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word recognition rate. Spectral and mel-scale cepstral feature spaces outperform linear cepstra and chroma. The 111-word classification experiment depicts f1 score of 0.99 for spectrum, 0.91 for mel-scale cepstrum , 0.76 for chromagram, and 0.64 for cepstrum feature space on test data set.
Authors
- dr Grazina Korvel link open in new tab ,
- Povilas Treigys,
- Gintautas Tamulevicus,
- Jolita Bernataviciene,
- prof. dr hab. inż. Bożena Kostek link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.17743/jaes.2018.0066
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2018