Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Syntheses and Structures of Transition Metal Complexes with Phosphanylphosphinidene Chalcogenide Ligands

The reactivity of the phosphanylphosphinidene complex [(DippN)2W(Cl)(η2-P-PtBu2)]− (1) toward chalcogens (Ch = Se, S) was studied. Reactions of stoichiometric amounts of 1 with chalcogens in DME yielded monomeric tungsten complexes with phosphanylphosphinidene chalcogenide ligands of the formula tBu2P−P−Ch (Ch = Se (in 2) and S (in 5)), which can be regarded as products of the addition of a chalcogen atom to a P=W bond in starting complex 1. The dissolution of selenophosphinidene complex 2 in nondonor solvents led to the formation of a dinuclear complex of tungsten (3) bearing a tBu2P(Se)−P ligand together with [tBuSe2Li(dme)2]2 and polyphosphorus species. Under the same reaction conditions, thiophosphinidene complex 5 dimerized via the formation of transient complex 7, possessing a thiotetraphosphane-diido moiety tBu2P(S−P−P−PtBu2. The elimination of the tBu2PS group from 7 yielded stable dinuclear tungsten complex 8 with an unusual phosphinidene tBu2P−P−P ligand. The reaction of 1 with excess chalcogen led to the cleavage of the P−P bond in the tBu2P−P ligand and the formation of [(DippN)2W(PCh4)]22− and [tBuCh2Li(dme)2]2. The isolated compounds were characterized by NMR spectroscopy and X-ray crystallography. Furthermore, the calculated geometries of the free selenophosphinidenes, tBu2P−P−Se and tBu2P(Se)−P, were compared with their geometries when serving as ligands in complexes 2 and 3.

Authors