Smart acoustic band structures exhibit very interesting and non-standard physical properties due to the periodic nature of their certain characteristic on different scale levels. They manifest mostly in their frequency spectra as socalled frequency band-gaps or stop-bands, what has a great impact on the behaviour of these structures in relation to the propagation of vibro-acoustic signals that can be transmitted through the structures in some precisely defined frequency bands. Properties of acoustic band structures are directly linked to their geometry on the level of the unit cell, which parameters determine structural dynamics of such structures on the macroscopic scale. Here the piezoelectric transducers play a significant role. The combined exploitation of active properties of acoustic band structures equipped with active piezoelectric elements, in order to filter or damp transmitted vibro-acoustic signals, allows for very effective their applications. In their paper, the authors present certain results of certain computer simulations by the time-domain spectral finite element method, related to 1-D smart active and passive acoustic band structures supplemented with experimental measurements.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1007/978-981-13-8331-1
- Category
- Publikacja monograficzna
- Type
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Language
- angielski
- Publication year
- 2020
Source: MOSTWiedzy.pl - publication "Smart acoustic band structures" link open in new tab