Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Ion conduction in beryllium-alumino-silicate glasses doped with sodium or sodium and lithium ions

Electrical properties of beryllium-alumino-silicate glasses containing sodium ions or sodium and lithium ions were studied with impedance spectroscopy technique over a frequency range from 10 mHz to 1 MHz and at temperature range from 213 to 473 K. The frequency- and temperature-dependent conductivity spectra of individual single alkali glasses were superimposed by means of the Summerfield scaling. Mixed-alkali glasses do not overlap into a single master curve. Glasses doped with sodium ions exhibit significantly higher values of D.C. conductivity and lower activation energy (~0.63 eV) than glasses doped with both sodium and lithium ions (~0.95 eV). The observed mixed-alkali effect can be described by the dynamic structure model (DSM). The conductivity pre-exponential factors and activation energy follow the Meyer-Neldel rule in both glass series. It was observed that the replacement of SiO2 by BeO in single cation glasses resulted in decrease in activation energy and pre-exponential factor σ0. In mixed cations glasses similar effect found for D.C. conduction process parameters was assigned to influence of both oxides BeO and Al2O3.

Authors