To offset the negative impact of photovoltaic modules on the environment, it is necessary to introduce a longterm strategy that includes a complete lifecycle assessment of all system components from the production phase through installation and operation to disposal. Recycling of waste products and worn-out systems is an important element of this strategy. As the conclusions from the previous studies have shown, thermal treatment provides an efficient first step in the recycling process, while chemical treatment was more advantageous in the second step. This study aims to assess the environmental impact of recovering and recycling the valuable semiconductor silicon wafer material from photovoltaic solar cells. A comparison was made between producing new solar cells with or without recycled silicon material. The analysis of the photovoltaic cell life cycle scenario including material recycling presented in this article was performed using SimaPro software and data combined and extended from different LCI databases. The idea is that the use of recycled materials, which were energy-consuming in the primary production stage, allows to meaningly reduce the energy input in the secondary life cycle. All stages of the silicon cell life cycle contribute to the Global Warming Potential (GWP) and greenhouse gas emissions reductions through the use of recycled silicon material represented 42%. The total environmental impact of photovoltaic production can be reduced by as much as 58%, mainly through reduced energy consumption in the production process of high purity crystalline silicon.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.solmat.2019.110259
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020