In the present study thin films of MgO – modified Ba0.6Sr0.4TiO3 (BST60/40) solid solution were prepared by the sol-gel-type chemical solution deposition method on stainless steel substrates. A multilayer spin-coating approach was utilized for the Ba0.6Sr0.4TiO3-MgO thin film deposition with subsequent thermal annealing at T=650-750C. Dried BST60/40-MgO gel powders were studied with thermogravimetric and differential thermal analysis to determine their thermochemical properties. X-ray diffraction analysis was utilized for thin film characterization in terms of its phase composition and crystal structure. The influence of y=1, 3 and 5 mol.% MgO doping on nanomechanical properties of BST60/40 thin films was studied with nanoindentation. It was found that BST6040 thin films adopted the tetragonal P4mm (99) structure. The volume of the BST60/40 elementary cell, the average hardness as well as the mean value of the Young modulus decreased with an increase in amount of MgO.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.ctmat.2016.07.017
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2017