Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Size-Controlled Synthesis of Pt Particles on TiO2 Surface: Physicochemical Characteristic and Photocatalytic Activity

Different TiO2 photocatalysts, i.e., commercial samples (ST‐01 and P25 with minority of rutile phase), nanotubes, well‐crystallized faceted particles of decahedral shape and mesoporous spheres, were used as supports for deposition of Pt nanoparticles (NPs). Size‐controlled Pt NPs embedded in TiO2 were successfully prepared by microemulsion and wet‐impregnation methods. Obtained photocatalysts were characterized using XRD, TEM, X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) specific surface area, DR/UV‐vis and action spectrum analysis. The effect of deposition method, amount of Pt precursor and TiO2 properties on size, distribution, and chemical states of deposited Pt NPs were investigated. Finally, the correlations between the physicochemical properties and photocatalytic activities in oxidation and reduction reactions under UV and Vis light of different Pt‐TiO2 photocatalysts were discussed. It was found that, regardless of preparation method, the photoactivity mainly depended on platinum and TiO2 morphology. In view of this, we claim that the tight control of NPs’ morphology allows us to design highly active materials with enhanced photocatalytic performance. Action spectrum analysis for the most active Pt‐modified TiO2 sample showed that visible light‐induced phenol oxidation is initiated by excitation of platinum surface plasmon, and photocatalytic activity analysis revealed that photoactivity depended strongly on morphology of the obtained Pt‐modified TiO2 photocatalysts

Authors