Yield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since the Monte Carlo sampling-based real physics simulation model evaluations are computationally intensive, this work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling technique for fast yield estimation. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel since the PCE is good at capturing the function tendency and Kriging is good at matching the observations at training points. The PC-Kriging is demonstrated with an analytical case and a multi-band patch antenna case and compared with direct PCE and Kriging metamodels. In the analytical case, PC-Kriging reduces the computational cost by around 42% compared with PCE and over 94% compared with Kriging. In the antenna case, PC-Kriging reduces the computational cost by over 60% compared with Kriging and over 90% compared with PCE. In both cases, the savings are obtained without compromising the accuracy.
Authors
- Xiaosong Du,
- Leifur Leifsson,
- prof. dr inż. Sławomir Kozieł link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1007/978-3-030-22744-9_38
- Category
- Aktywność konferencyjna
- Type
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language
- angielski
- Publication year
- 2019