It is proved that a kernel, doubly Markovian operator T is asymptotically periodic if and only if its deterministic σ-field Σd(T)(equivalently Σd(T∗)) is finite. It follows that kernel doubly Markovian operator T is asymptotically periodic if and only if T∗ is asymptotically periodic.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1007/s11117-020-00754-w
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2021