Metallic materials intended for bone implants should exhibit not only appropriate mechanical properties, but also high biocompatibility. The surface treatment modifications, for example acidic treatment, laser treatment, ion implantation and deposition of highly biocompatible coatings, are practiced. One of the most popular methods of surface modification is to deposit hydroxyapatite (HAp) coatings. HAp naturally occurs in human body, but can be also synthesized in laboratory conditions. Among diverse deposition techniques, electrophoretic deposition (EDP) is a cost-effective method in which charged particles, dispersed in an organic medium, after applying voltage migrate to the counter charged electrode forming a thin coating. There are several parameters that can be controlled during the process and that directly affect the morphology of the surface. The zeta potential and pH of prepared colloidal suspension are closely related to suspension stability and affect the susceptibility for agglomeration of the particles. Electrical settings, especially applied voltage, affect primarily the mass of deposition, but also the porosity of the coating, as well as its homogeneity. One of the basic parameters of EDP method is time of process. With increasing process time, the thickness of the deposited coating increases. Importantly, its mechanical properties also decrease. Moreover, the particles shape and size also affect the morphology of the deposited coating. The analysis of many variables is necessary to choose the right parameters to obtain the coating with desired morphology. In this paper, the influence of each parameter on the morphology of hydroxyapatite coatings is discussed.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.15199/28.2020.1.3
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020