Within the six-parameter nonlinear shell theory we analyzed the in-plane rotational instability which oc- curs under in-plane tensile loading. For plane deformations the considered shell model coincides up to notations with the geometrically nonlinear Cosserat continuum under plane stress conditions. So we con- sidered here both large translations and rotations. The constitutive relations contain some additional mi- cropolar parameters with so-called coupling factor that relates Cosserat shear modulus with the Cauchy shear modulus. The discussed instability relates to the bifurcation from the static solution without rota- tions to solution with non-zero rotations. So we call it rotational instability. We present an elementary discrete model which captures the rotational instability phenomenon and the results of numerical anal- ysis within the shell model. The dependence of the bifurcation condition on the micropolar material parameters is discussed.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.ijsolstr.2020.04.030
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020