Background: Ventral hernia repair needs to be improved since recurrence, postoperative pain and other complications are still reported in many patients. The behavior of implants in vivo is not sufficiently understood to design a surgical mesh mechanically compatible with the human abdominal wall. Methods: This analysis was based on radiological pictures of patients who underwent laparoscopic ventral hernia repair. The pictures show the trunk of the patient at rest in a standing position and under side bending. The change in the distance between different tacks due to trunk movement was analyzed, which allowed us to determine the in vivo elongation of the mesh incorporated into the abdominal wall. Findings: The relative elongations of the surgical mesh varied from a few percent to greater than 100% in two cases. The median of the median relative elongations obtained for all patients is 9.5%, and the median of the maximum relative elongations for all patients is 32.6%. The maximum elongation occurs between tacks that are next to each other. Trunk movement causes implant deformation, and this study provides quantitative information regarding changes in the distance between fasteners. Interpretation: The physiological movement of the human abdomen must be regarded as a very important factor in mesh deformation and should be considered in surgical practice to reduce the hernia recurrence rate and postoperative pain.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.clinbiomech.2020.105076
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020