In this paper we use the classical notion of weak Mycielskian M'(G) of a graph G and the following sequence: M'_{0}(G) =G, M'_{1}(G)=M'(G), and M'_{n}(G)=M'(M'_{n−1}(G)), to show that if G is a complete graph oforder p, then the above sequence is a generator of the class of p-colorable graphs. Similarly, using Mycielskian M(G) we show that analogously defined sequence is a generator of the class consisting of graphs for which the chromatic number of the subgraph induced by all vertices that belong to at least one triangle is at most p. We also address the problem of characterizing the latter class in terms of forbidden graphs.
Authors
- Mieczysław Borowiecki,
- dr hab. inż. Piotr Borowiecki link open in new tab ,
- Ewa Drgas-Burchardt,
- Elżbieta Sidorowicz
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.7151/dmgt.2345
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020
Source: MOSTWiedzy.pl - publication "Graph classes generated by Mycielskians" link open in new tab