Practical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report performance results depending on batch sizes and GPU selection and compare them with the results from another contemporary workstation based on the same set of GPUs – NVIDIA® DGX Station ™ . The results show that the AC922 performs better in all tested configurations, achieving improvements up to 10.3%. Profiling indicates that the improvement is due to the efficient I/O pipeline. The performance differences depend on the specific model, rather than on the model class (RNN/CNN). Both systems offer good scalability up to 4 GPUs. In certain cases there is a significant difference in performance depending on exactly which GPUs are used for computations.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1109/hpcs48598.2019.9188164
- Category
- Aktywność konferencyjna
- Type
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language
- angielski
- Publication year
- 2020