Earthquakes may induce serious dynamic loads acting on buildings, which can lead to damage or even destruction of the whole structure. In densely populated areas, it is quite common that buildings are located very close one to another which can result in pounding between them during ground motions. Due to the environmental awareness, multi-story timber frame buildings are gaining popularity and therefore there is a need to investigate the effects of structural collisions on seismic response of such buildings. In this paper, the results of advanced numerical FEM simulation, focused on inter-story pounding between two adjacent multi-story timber frame buildings, are presented. The results of the study show that structural interactions have a significant influence on the overall response of buildings exposed to damaging seismic excitations. Moreover, due to deformability of buildings made of wood, pounding may change response of such buildings much more, as compared to steel, reinforced concrete or masonry structures. Finally, the results confirm that the use of the nonlinear FEM with detailed representation of material and geometric structural properties can be considered as the effective approach in obtaining the accurate response of colliding timber frame buildings during earthquakes
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1063/5.0034905
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020