We present a thorough evaluation of the water soluble fraction of the trace element composition (Ca, Sr, Mg, Na, K, Li, B, Rb, U, Ni, Co, As, Cs, Cd, Mo, Se, Eu, Ba, V, Ge, Ga, Cr, Cr, P, Ti, Mn, Zr, Ce, Zn, Fe, Gd, Y, Pb, Bi, Yb, Al, Nb, Er, Nd, Dy, Sm, Ho, Th, La, Lu, Tm, Pr, Tb, Fe, In, Tl) and their fluxes in the annual snowpack and the firn of the Hansbreen (a tidewater glacier terminating in the Hornsund fjord, southwest Spitsbergen). The trace element samples were obtained from a 3 m deep snow pit dug at the plateau of the glacier (450 m a.s.l.), and from a 2 m deep firn core collected from the bottom of the snow pit. The comparison of elemental fluxes and enrichment factors allowed us to constrain specific summer and wintertime deposition patterns of water soluble trace elements in the southern part of the Svalbard archipelago. Our results suggest that the chemical composition of the Hansbreen (and likely other glaciers where the summit is close to the equilibrium line) is mainly affected by summertime deposition of trace elements from local sources and some volatile elements, which may be transported into the Arctic when polar vortex is weak. The melting of the annual snowpack seems to have a minor influence on the overall chemical signature of the glacier ice.
Authors
- Andrea Spolaor,
- Beatrice Moroni,
- Bartłomiej Luks link open in new tab ,
- Adam Nawrot,
- Marco Roman,
- Catherine Larose,
- Łukasz Stachnik,
- Federica Bruschi,
- dr Krystyna Kozioł link open in new tab ,
- mgr inż. Filip Pawlak link open in new tab ,
- Clara Turetta,
- Elena Barbaro,
- Jean-Charles Gallet,
- David Cappelletti
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.3389/feart.2020.536036
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020