The present work aimed to assess six diaryl sulfide derivatives as potential corrosion inhibitors. These derivatives were compared with dapsone (4,4′-diaminodiphenyl sulfone), a common leprosy antibiotic that has been shown to resist the corrosion of mild steel in acidic media with a corrosion efficiency exceeding 90%. Since all the studied compounds possess a common molecular backbone (diphenyl sulfide), dapsone was taken as the reference compound to evaluate the efficiency of the remainder. In this respect, two structural factors were examined, namely, (i) the effect of replacement of the S-atom of diaryl sulfide by SO or SO2 group, (ii) the effect of the introduction of an electron-withdrawing or an electron-donating group in the aryl moiety. Two computational chemical approaches were used to achieve the objectives: the density functional theory (DFT) and the Monto Carlo (MC) simulation. First, B3LYP/6-311+G(d,p) model chemistry was employed to calculate quantum chemical descriptors of the studied molecules and their geometric and electronic structures. Additionally, the mode of adsorption of the tested molecules was investigated using MC simulation. In general, the adsorption process was favorable for molecules with a lower dipole moment. Based on the adsorption energy results, five diaryl sulfide derivatives are expected to act as better corrosion inhibitors than dapsone.
Authors
- Morad El-Hendawy,
- Asmaa Kamel,
- Mohamed Mahmoud,
- Rabah Boukherroub,
- dr hab. inż. Jacek Ryl link open in new tab ,
- Prof. Mohammed Amin
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.3390/molecules26206312
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2021