The efficiency of deammonification depends on the cooperation of ammonium oxidizing bacteria and archaea (AOB/AOA), anaerobic ammonium oxidizing bacteria (AnAOB) and the effective suppression of nitrite oxidizing bacteria (NOB) that compete with AnAOB for nitrite (NO2 -N). One of the effective NOB suppression strategies is intermittent aeration. However, it is important to have a good understanding of the optimum dissolved oxygen (DO) value in the aeration period and optimize the non-aeration time used during the reaction phase. This study comprised the investigation of the effect of different DO set points (0.4, 0.7, 1.0 and 1.5 mg O2/L) under the same aeration length off/on (12/3 min). Moreover, three different intermittent aeration modes (9/3, 6/3, 3/3) under the same DO set point (0.7 mg O2/L) were more investigated. The experiment was conducted for 6 months (180 days) in a laboratory-scale sequencing batch reactor (SBR) with a working volume of 10 L. The results indicated that a high N removal efficiency was achieved 74% at the DO set point = 0.7 mg O2/L during aeration strategy off/on (6/3 min) due to the low nitrate production rate (NPR) 0.9 mg N/g VSS/h and high ammonium utilization rate (AUR) 13 mg N/g VSS/h (NPR/AUR = 0.06). Mathematical modeling results confirmed that the feasible DO set point 0.7 and intermittent aeration mode off/on (6/3 min) were especially suitable for the optimal balance between the NOB suppression and keeping high activities of AOB and anammox in the system.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.3390/w14030368
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2022