In this work, we study second-order Hamiltonian systems under small perturbations. We assume that the main term of the system has a mountain pass structure, but do not suppose any condition on the perturbation. We prove the existence of a periodic solution. Moreover, we show that periodic solutions of perturbed systems converge to periodic solutions of the unperturbed systems if the perturbation tends to zero. The assumption on the potential that guarantees the mountain pass geometry of the corresponding action functional is of independent interest as it is more general than those by Rabinowitz [Homoclinic orbits for a class of Hamiltonian systems, Proc. R. Soc. Edinburgh A 114 (1990) 33–38] and the authors [M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second-order Hamiltonian systems, J. Differ. Equ. 219 (2005) 375–389].
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1142/s0219199722500110
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2022