Recent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work, a generalization of the MIMO approach is applied to the task of object detection using the general-purpose Faster R-CNN model. It was shown that using the MIMO framework allows building strong feature representation and obtains very competitive accuracy when using just two input/output pairs. Furthermore, it adds just 0.5% additional model parameters and increases the inference time by 15.9% when compared to the standard Faster R-CNN. It also works comparably to or outperforms the Deep Ensemble approach in terms of model accuracy, robustness to out-of-distribution setting, and uncertainty calibration when the same number of predictions is used. This work opens up avenues for applying the MIMO approach in other high-level tasks such as semantic segmentation and depth estimation.
Authors
Additional information
- Category
- Aktywność konferencyjna
- Type
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language
- angielski
- Publication year
- 2022