The near-edge X-ray absorption fine structure (NEXAFS) spectra of the gas-phase isoxazole molecule have been measured by collecting total ion yields at the C, N, and O K-edges. The spectral structures have been interpreted using time-dependent density functional theory (TD-DFT) with the short-range corrected SRC2-BLYP exchange–correlation functional. Experimental and calculated energies of core excitations are generally in good agreement, and the nature of observed core-excitation transitions has been elucidated. The experimental C 1s, N 1s, and O 1s core electron binding energies (CEBEs) have additionally been estimated from another yield measurement where the neutral fragments in high-Rydberg (HR) states were ionized by the electric field. For comparison, theoretical CEBEs have been calculated at the DM06-2X//mixed basis set level. We have also calculated the vibrationally resolved spectra pertaining to the lowest C 1s and N 1s core-excited roots in the Franck–Condon–Herzberg–Teller (FCHT) approximation. These spectra correlate well with the observed spectral features and have proven useful in resolving certain ambiguities in the assignment of the low-lying C 1s NEXAFS bands.
Authors
- dr hab. Tomasz Wąsowicz link open in new tab ,
- dr Ivan Ljubić,
- Antti Kivimäki,
- Robert Richter
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1039/d2cp02366k
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2022