This paper presents the design, optimization, and calibration of multivariable resonators for mi-crowave dielectric sensors. An optimization technique for circular complementary split ring reso-nator (CC-SRR) and square complementary split ring resonator (SC-SRR) is presented to achieve the required transmission response in a precise manner. The optimized resonators are manufac-tured using a standard photolithographic technique and measured for fabrication tolerance. The fabricated sensor is presented for high-resolution characterization of dielectric substrates and oil samples. A three-dimensional dielectric container is attached to the sensor, which acts as a pool for the sample under test (SUT). In the presented technique, the dielectric substrates and oil sam-ples can interact directly with the electromagnetic (EM) field emitted from the resonator. For the sake of sensor calibration, a relation between the relative permittivity of the dielectric samples and the resonant frequency of the sensor is established in the form of the inverse regression model. Comparisons with state-of-the-art sensors indicate the superiority of the presented design in terms of oil characterization reliability. The significant technical contributions of this work include the employment of rigorous optimization of geometry parameters of the sensor leading to its superior performance, the development and application of the inverse-model-based calibration procedure.
Authors
- Tanveer Haq Ul,
- prof. dr inż. Sławomir Kozieł link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.3390/s23021044
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2023