Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Neural networks and deep learning

In this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings for different scenarios and variants of CNNs. Finally, the third part presents Neural Networks for sequence modeling, in particular Recurrent Neural Networks (RNN), Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM) and Attention Mechanisms. The description of the latter models are made in the context of different applications that allows to explain in a better way the details of each particular kind of neural network.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1016/b978-0-12-820125-1.00021-x
Category
Publikacja monograficzna
Type
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Language
angielski
Publication year
2022

Source: MOSTWiedzy.pl - publication "Neural networks and deep learning" link open in new tab

Portal MOST Wiedzy link open in new tab