In this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings for different scenarios and variants of CNNs. Finally, the third part presents Neural Networks for sequence modeling, in particular Recurrent Neural Networks (RNN), Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM) and Attention Mechanisms. The description of the latter models are made in the context of different applications that allows to explain in a better way the details of each particular kind of neural network.
Authors
- A. Pastor López-Monroy,
- dr Jesus Garcia Salinas link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/b978-0-12-820125-1.00021-x
- Category
- Publikacja monograficzna
- Type
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Language
- angielski
- Publication year
- 2022
Source: MOSTWiedzy.pl - publication "Neural networks and deep learning" link open in new tab