In this paper a new approach to the design of the high-speed binary-to-residue converter is proposed that allows the attaining of high pipelining rates by eliminating memories used in modulo m generators. The converter algorithm uses segmentation of the input binary word into 2-bit segments. The use and effects of the input word segmentation for the synthesis of converters for five-bit moduli are presented. For the number represented by each segment, the modulo m reduction using a segment modulo m generator is performed. The use of 2-bit segments substantially reduces the hardware amount of the layer of input modulo m generators. The generated residues are added using the multi-operand modulo m adder based on the carry-save adder (CSA) tree, reduction of the number represented by the output CSA tree vectors to the 2m range and fast two-operand modulo m additions. Hardware amount and time delay analyses are also included.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.26408/124.04
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2022