Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Bimodal Emotion Recognition Based on Vocal and Facial Features

Emotion recognition is a crucial aspect of human communication, with applications in fields such as psychology, education, and healthcare. Identifying emotions accurately is challenging, as people use a variety of signals to express and perceive emotions. In this study, we address the problem of multimodal emotion recognition using both audio and video signals, to develop a robust and reliable system that can recognize emotions even when one modality is absent. To achieve this goal, we propose a novel architecture based on well-designed feature extractors for each modality and use model-level fusion based on a TFusion block to combine the information from both sources. To be more efficient in real-world scenarios, we trained our model on a compound dataset consisting of RAVDESS, RML, and eNTERFACE'05. It is then evaluated and compared to the state-of-the-art models. We find that our approach performs close to the modern solutions and can recognize emotions accurately when one of the modalities is missing. Additionally, we have developed a real-time emotion recognition application as a part of this work.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1016/j.procs.2023.10.247
Category
Aktywność konferencyjna
Type
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Language
angielski
Publication year
2023

Source: MOSTWiedzy.pl - publication "Bimodal Emotion Recognition Based on Vocal and Facial Features" link open in new tab

Portal MOST Wiedzy link open in new tab