Polyurethane (PUR) foams are widely used in many engineering applications, but their efficient recycling has remained a major challenge for many years. This study presents a novel strategy of incorporating hydrolyzable ester units into the PUR structure to enhance PUR foam recyclability. The present ecodesign concept of PUR materials enables fully the replacement of petrochemical polyols with biobased alternatives and production of ultralow-density (16 kg·m−3) PUR foams. To each this target, a series of low-function polyols based on succinic acid (SA) were first synthesized. Their subsequent use in combination with a highfunctional biobased tall oil-derived polyol led to the production of highly homogenous semirigid, partly open-cell PUR foams with outstanding structural, thermal, and mechanical properties. Additionally, the study shows that the incorporation of SA-polyols with hydrolyzable ester linkages into the PUR foams significantly enhances their recyclability via glycolysis, proving their potential in contributing to a circular economy and addressing plastic waste concerns.
Authors
- mgr inż. Olga Gotkiewicz,
- dr Mikelis Kirpluks,
- Zuzanna Walterova,
- Olga Kockova,
- Sabina Abbrent,
- dr inż. Paulina Parcheta-Szwindowska link open in new tab ,
- prof. Ugis Cabulis,
- dr Hynek Benes
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1021/acssuschemeng.3c06924
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2024