Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

A multiparameter simulation-driven analysis of ship turning trajectory concerning a required number of irregular wave realizations

In times of progressive automation of the marine industry, accurate modeling of ship maneuvers is of utmost importance to all parties involved in maritime transportation. Despite the existence of modern collisionavoidance algorithms using 6DOF motion models to predict ship trajectories in waves, the impact of stochastic realization of irregular waves is usually neglected and remains under-investigated. Therefore, herein, this phenomenon and its impact were investigated in the case study of the passenger ship’s turning. To this end, statistical and spatiotemporal distributions of ship positions and corresponding trajectory parameters were analyzed. This was made using massive 6DOF simulation data with particular attention to the observed extremes. Additionally, the minimum number of wave realizations has been determined using different methods in various simulation scenarios and afterward compared concerning parameters’ impact and existing dependencies. The results indicate that for simulated scenarios, the required number of wave realizations should be at least 20, but in rough seas should be greater than 30. These values satisfy an acceptable and operationally reasonable error limit reaching 15% of the ship’s length overall. The obtained results may be of interest to autonomous ship developers, scholars, and marine industry representatives working on intelligent collision-avoidance solutions and ship maneuvering models.

Authors