Rozprawa doktorska poświęcona jest badaniu zastosowania fuzji danych oraz sterowania predykcyjnego w systemie dynamicznego pozycjonowania statku. W pierwszej części pracy przedstawiono historię rozwoju systemów dynamicznego pozycjonowania, różne metody estymacji położenia statku, metody sterowania oraz cel i tezę pracy. Następnie zaprezentowano model matematyczny statku, kinematykę oraz dynamikę. W kolejnej części przedstawiono algorytmy fuzji danych, takie jak filtr Kalmana, rozszerzony filtr Kalmana, nieliniowy obserwator oraz filtr cząsteczkowy. W rozprawie przedstawiono również algorytm kaskadowego połączenia filtru cząsteczkowego i rozszerzonego filtru Kalmana. W kolejnej części zaprezentowano algorytmy sterowania, takie jak PID, regulator backstepping oraz sterowanie predykcyjne. W pracy przedstawiono dwa kierunki badań. Pierwszy dotyczy zadania fuzji danych z wykorzystaniem nadmiarowej struktury pomiarowej dokonującej pomiaru położenia, kursu i prędkości w celu estymacji tych wielkości i zakłóceń środowiskowych. Drugi kierunek badań dotyczy poprawy jakości sterowania statkiem z wykorzystaniem nieliniowego modelu statku w sterowaniu predykcyjnym. Wyniki tych badań wskazują, że połączenie fuzji danych i sterowania predykcyjnego pozwala na zwiększenie dokładności pozycjonowania statku oraz bezpieczeństwa statku w sytuacjach awaryjnych.
Authors
Additional information
- Category
- Doktoraty, rozprawy habilitacyjne, nostryfikacje
- Type
- praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
- Language
- polski
- Publication year
- 2023