Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Nanostructured biocatalysis for biotechnological applications

The purpose immobilization process is to enhance the performance of an enzyme for commercial processes. A large number of structures have been reported in the literature to boost the effectiveness of immobilized enzymes. The nanomaterials have the optimal properties for equilibrating key parameters that govern the performance of biocatalysts, such as high enzyme loading ability, specific surface area, and mass transfer resistance. With the advent of nanotechnology, nanomaterials have emerged as novel and intriguing matrices for enzyme immobilization due to their distinct physicochemical features. Immobilizing enzymes on functionalized nanostructured materials may improve nano-biocatalyst stability while maintaining the free enzyme activity and allowing for facile recyclability under various settings. It is essential for the successful implementation of enzyme-based industrial processes. This chapter reviews recent advances in the study and application of various classes of nanostructured materials for enzyme immobilization (nanocrystals, nanostructured supportive material, carbon nanotubes, nanofibers, nanoparticles, and composite materials), as well as some examples of their use in the development of biologically active systems. Nanoparticles as an immobilization matrix are also examined for their benefits and drawbacks. To improve the state of enzyme immobilization and bring new perspectives to the industrial sector, future research should be focused on using novel approaches and innovatively adapted support materials.

Authors

  • Areej Shahbaz,
  • Nazim Hussain,
  • Ayesha Mumtaz,
  • José R. Guimarães,
  • Paulo W. Tardioli,
  • Roberto Fernández-Lafuente,
  • Hafiz M.N. Iqbal,
  • dr Muhammad Bilal

Additional information

DOI
Digital Object Identifier link open in new tab 10.1016/b978-0-323-91760-5.00022-1
Category
Publikacja monograficzna
Type
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Language
angielski
Publication year
2023

Source: MOSTWiedzy.pl - publication "Nanostructured biocatalysis for biotechnological applications" link open in new tab

Portal MOST Wiedzy link open in new tab