Solar photovoltaic (PV) panels generate optimal electricity when operating at the maximum power point (MPP). This study introduces a novel MPP tracking algorithm that leverages the numerical prowess of the predictor-corrector method, tailored to accommodate voltage and current fluctuations in PV panels resulting from variable environmental factors like solar irradiation and temperature. This paper delves into the intricate dynamics of solar panels, presenting a comprehensive mathematical model capturing the interdependencies between current, voltage, power, solar irradiation, and temperature. Existing numerical MPPT techniques are explored to provide their advantages and disadvantages. The proposed algorithm, formulated in MATLAB, encapsulates essential solar panel variables and undergoes rigorous dynamic testing in the Simulink® environment under diverse solar irradiation and temperature scenarios. These results are visually represented through graphs and tabulations. A subsequent section offers a simulation-driven comparative review of the proposed algorithm against established methodologies. The article culminates with conclusions drawn from the empirical findings and outlines promising avenues for future research.
Authors
- Lyu Guanghua,
- Syed M. Hussain,
- Arsalan Muhammad Soomar link open in new tab ,
- Shoaib Shaikh,
- Syed Hadi Hussain Shah link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.rineng.2023.101740
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2024