Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Oxygen concentration regulated the efficient liquefaction of vulcanized natural rubber

Oxidative liquefaction represents a promising avenue for the homogeneous and high-value utilization of waste tire rubber. Given that truck tires predominantly comprise natural rubber (NR), this study investigated the efficient liquefaction of vulcanized NR regulated by oxygen concentration. Remarkably, the liquefaction of vulcanized NR was realized with an oxygen concentration of 75 % at 200 °C within 3 min. FTIR spectroscopy showed that carbonyl, ether and sulphoxide groups were produced during the liquification of NR vulcanizates. Oxygen concentration significantly affected the oxidative efficiency of both the main chains and crosslinks, with a more pronounced effect observed on the main chains. Nevertheless, the similar molecular weights and polydispersity indices across various degraded products suggested a selective oxidative cleavage of the NR backbone. Furthermore, online ATR-FTIR was used to monitor the dynamic changes of NR's molecular structure to elucidate the oxidative degradation mechanism. The oxidative cleavage of NR main chain primarily occurred at the C-C bonds connected with allyl groups, producing oxidized products enriched with conjugated carbonyl groups. Alternatively, the main chain scission may also occur due to the electronic rearrangement effect of the C=C bond and produce saturated carbonyl groups. Oxygen concentration modulated the degradation efficiency of vulcanized NR, which provided an efficient strategy for the upcycling of NR-based waste tires.

Authors