Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

A Computational Analysis of the Proton Affinity and the Hydration of TEMPO and Its Piperidine Analogs

The study investigated the impact of protonation and hydration on the geometry of nitroxide radicals using B3LYP and M06-2X methods. Results indicated that TEMPO exhibited the highest proton affinity in comparison to TEMPOL and TEMPONE. Two pathways contribute to hydrated protonated molecules. TEMPO shows lower first enthalpies of hydration (ΔH1-M), indicating stronger H-bonding interactions, while TEMPONE shows higher values, indicating weaker interactions with H2O. Solvent effects affect charge distribution by decreasing their atomic charge. Spin density (SD) is primarily concentrated in the NO segment, with minimal water molecule contamination. Protonation increases SD on N-atom, while hydration causes a more pronounced redistribution for water molecules. The stability of the dipolar structure (>N•+-O-) is evident in SD redistributions. The frontier molecular orbital (FMO) analysis of TEMPONE reveals a minimum EHOMO-LUMO gap (EH-L), enhancing the piperidine ring's reactivity. TEMPO is the most nucleophilic species, while TEMPONE exhibits strong electrophilicity. Transitioning from NO radicals to protonated forms increases the EH-L gap, indicating protonation stabilizes FMOs. Increased water molecules make the molecule less reactive, while increasing hydration decreases this energy gap, making the molecule more reactive. A smaller EH-L gap indicates the compound becomes softer and more prone to electron density and reactivity changes.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1002/cphc.202400518
Category
Publikacja w czasopiśmie
Type
artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
Language
angielski
Publication year
2024

Source: MOSTWiedzy.pl - publication "A Computational Analysis of the Proton Affinity and the Hydration of TEMPO and Its Piperidine Analogs" link open in new tab

Portal MOST Wiedzy link open in new tab