Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Comparative analysis of seismic response reduction in multi-storey buildings equipped with base isolation and passive/active friction-tuned mass dampers

This study presents an innovative approach to mitigating seismic responses in multi-storey buildings equipped with a base-isolation (BI) system and passive friction-tuned mass dampers (PFTMDs). The key innovation lies in the combined use of a BI system and a PFTMD system, as well as the activation of this mechanical system by controllers. Additionally, the research design optimizes the parameters of these devices specifically for each earthquake scenario and compares the results to the average of the optimal parameters, which has not been investigated in previous studies. In this study, a 10-storey structure is modeled, featuring a BI system beneath the first floor and a PFTMD system on the roof. The parameters for the BI, PFTMD, BI-PFTMD, and BI-active FTMD (BI-AFTMD) systems are independently optimized using a multi-objective particle swarm optimization (MOPSO) algorithm. To enhance the passive BI-PFTMD system, a proportional-integral-derivative (PID) controller is incorporated into the friction-tuned mass damper system, resulting in the BI-AFTMD hybrid control system that adjusts the final control force transmitted to the structure. The seismic performance of these systems is assessed for the 10-storey building under both far-field and near-field earthquakes. The findings reveal that these control systems significantly decrease average peak displacement, acceleration, and inter-storey drift as compared to an uncontrolled structure, especially when system parameters are optimized for the same earthquake scenario. Using average optimal parameters, the BI-AFTMD system achieves the most substantial reduction in average peak displacement, while the BI system offers the greatest reduction in average peak acceleration and inter-storey drift.

Authors