We study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden the class of considered functions $\Phi$ so our result generalizes earlier analogous results proved in isotropic setting.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1007/s10231-024-01477-5
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
- Language
- angielski
- Publication year
- 2024