Folic acid salt (sodium folate) was studied as an eco-friendly and non-toxic copper corrosion inhibitor in 3.5% NaCl solution. Electrochemical impedance spectroscopy, polarization resistance and weight-loss measurements show that the inhibitor efficiency increases with concentration (the highest value- approx. 96% was reported for the solution containing 16 mM sodium folate after 24 h). EIS data and Tafel plots indicate that sodium folate is a barrier, mixed-type (with predominant cathodic character) inhibitor. Inhibitor efficiency decreases with temperature, which suggests that adsorption has physical character rather than chemical one - adsorption free energy calculated using the Langmuir model is consistent with this statement. Activation energy determined from the Arrhenius plot increases as a result of inhibitor presence. Efficiency of the inhibitor increases systematically during the first 12 hours of immersion. Potential chemical changes in sodium folate solution were investigated using UV-VIS spectroscopy. Furthermore, copper surface after immersion in the presence and absence of inhibitor was characterized with scanning electron microscopy, energy-dispersive X-Ray spectroscopy and microscopic photographs.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.jiec.2024.07.035
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
- Language
- angielski
- Publication year
- 2024