Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

MagMax: Leveraging Model Merging for Seamless Continual Learning

This paper introduces a continual learning approach named MagMax, which utilizes model merging to enable large pre-trained models to continuously learn from new data without forgetting previously acquired knowledge. Distinct from traditional continual learning methods that aim to reduce forgetting during task training, MagMax combines sequential fine-tuning with a maximum magnitude weight selection for effective knowledge integration across tasks. Our initial contribution is an extensive examination of model merging techniques, revealing that simple approaches like weight averaging and random weight selection surprisingly hold up well in various continual learning contexts. More importantly, we present MagMax, a novel model-merging strategy that enables continual learning of large pre-trained models for successive tasks. Our thorough evaluation demonstrates the superiority of MagMax in various scenarios, including class- and domain-incremental learning settings. The code is available on github.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1007/978-3-031-73013-9_22
Category
Aktywność konferencyjna
Type
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Language
angielski
Publication year
2024

Source: MOSTWiedzy.pl - publication "MagMax: Leveraging Model Merging for Seamless Continual Learning" link open in new tab

Portal MOST Wiedzy link open in new tab