Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Leather Waste Hydrolysation, Carbonization, and Microbial Treatment for Nitrogen Recovery by Ryegrass Cultivation

Leather waste contains up to 10% nitrogen (N); thus, combustion or gasification only for the energy recovery would not be rational, if safety standards are met. On the other hand, the chromium (Cr) content exceeding 5% in half of the waste stream (w/w) is too significant to be applied in agriculture. In this work, four acid hydrolysates from leather waste shavings, both wet-white free of Cr and wet-blue with Cr, were used: two with a mixture of acids and supplemented with Cu, Mn, and Zn, and the other two as semi-products from collagen extraction using hydrochloric acid. Additionally wet-green leather waste shavings, e.g., impregnated with olive extract, were used followed by the two treatments: amendment with a biochar from “wet white” leather waste shavings and amendment with this biochar incubated with the commercial phosphorus stimulating microbial consortia BactoFos. They were applied as organic nitrogen-based fertilizers in a glasshouse experiment, consisting of 4–5 subsequent harvests every 30 days, under spring–autumn conditions in northern Poland. Biochar-amended wet-greens provided the highest nitrogen use efficiencies, exceeding 100% after 4 months of growth (for 20 kg N/ha) and varying from 17% to 37% in particular months. This is backed up by another parameter (relative agronomic effectiveness) that for these materials exceeded 150% for a single month and in total was around 33%. Biochar amendments significantly increased agronomic parameters for wet-greens, and their microbial treatment enhanced them even further. Recycling this type of waste can replace inorganic fertilizers, reducing greenhouse gas emissions and carbon footprint.

Authors