We prove that with only one exception, all expanding Lorenz maps $f\colon[0,1]\to[0,1]$ with the derivative $f'(x)\ge\sqrt{2}$ (apart from a finite set of points) are locally eventually onto. Namely, for each such $f$ and each nonempty open interval $J\subset(0,1)$ there is $n\in\N$ such that $[0,1)\subset f^n(J)$. The mentioned exception is the map $f_0(x)=\sqrt{2}x+(2-\sqrt{2})/2 \pmod 1$. Recall that $f$ is an expanding Lorenz map if it is strictly increasing on $[0,c)$ and $[c,1]$ for some $c$ and satisfies the condition $\inf{f'}>1$.
Authors
- dr hab. Piotr Bartłomiejczyk link open in new tab ,
- Piotr Nowak-Przygodzki
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.4064/cm9382-10-2024
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2024