This paper presents a method of sound source separation in live audio signals, based on sound intensity analysis. Sound pressure signals recorded with an acoustic vector sensor are analyzed, and the spectral distribution of sound intensity in two dimensions is calculated. Spectral components of the analyzed signal are selected based on the calculated source direction, which leads to a spatial filtration of the sound. The experiments were performed with test signals convolved with impulse responses of a real sensor, recorded for a varying sound source position. The experiments evaluated the proposed method’s ability to separate sound sources, depending on their position, spectral content, and signal-to-noise ratio, especially when multiple sources are active at the same time. The obtained results are presented and discussed. The proposed algorithm provided signal-to-distortion ratio (SDR) values 10–12 dB, and Short-Time Objective Intelligibility Measure (STOI) values in the range 0.86–0.94, an increase by 0.15–0.30 compared with the unprocessed speech signal. The proposed method is intended for applications in automated speech recognition systems, speaker diarization, and separation in the concurrent speech scenarios, using a small acoustic sensor.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.3390/s25051509
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2025