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Quantum states representing perfectly secure bits are always distillable
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It is proven that recently introduced states with perfectly secure bits of cryptographic key (private states
representing secure bit) [K. Horodecki er al., Phys. Rev. Lett. 94, 160502 (2005)] as well as its multipartite and
higher dimension generalizations always represent distillable entanglement. The corresponding lower bounds

on distillable entanglement are provided. We also present a simple alternative proof that for any bipartite

quantum state entanglement cost is an upper bound on a distillable cryptographic key in a bipartite scenario.
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I. INTRODUCTION

For a long time quantum cryptography with entanglement
discovered by Ekert [1] has been developed based on pure
quantum entanglement as a central resource. More precisely
the schemes (see Ref. [2]) existing in this domain were
equivalent to entanglement distillation [3]. Recently it
has been shown that entanglement which is not distillable
(bound entanglement) can provide a quantum cryptographic
key [4]. This leads to a general scheme of quantum secure
key distillation [4,5] with a private state representing a
secure bit (alternatively: a private bit state or private bit) as
an important notion. The latter is a quantum state shared by
Alice and Bob that contains at least one bit of perfectly se-
cure cryptographic key. Quite nonintuitively, private bits can
be approximated arbitrarily well by some bound entangled
states in some special sense: There exist a sequence of pri-
vate bits with a dimension of their “shield” part going to
infinity and another sequence of bound entangled states such
that trace distance between elements of the two sequences
goes to zero [4,5]. Here we show that despite that fact any
single private bit is distillable. Using local filtering [6] in a
way exploited in Ref. [7] we provide a lower bound on the
corresponding distillable entanglement of a multipartite ver-
sion of d-dimensional private state (d-dimensional generali-
zation of private bit). Note that the special (bipartite) case of
our result has already found an important application in a
proof of unconditional cryptographic security with small dis-
tillable entanglement [8]. Finally we give a simple alterna-
tive proof that for any bipartite state entanglement cost E.
(see Refs. [9,10]) is an upper bound on the amount of a
distillable cryptographic key K (usually called distillable
key). Originally this was proven [4,5] from the fact that the
regularized entropy of entanglement Ej is an upper bound
for K. We provide a simpler version that does not need to
refer to Ep.

II. LOWER BOUNDS ON DISTILLABILITY
A. Distillation of entanglement from private bits

For purely pedagogical reasons, at the very beginning we
shall derive the lower bound on distillable entanglement of
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private bits. This is the starting point for more general
classes of secure states as d-dimensional private states and
their multipartite counterparts.

Let us recall the definition of private bit [4,5]. This is the
bipartite state with an internal structure of both Alice and
Bob systems. It is defined on a four-partite Hilbert space
Hapargr=Hs@Hz®H, ® Hp with subsystems denoted by
A and A’ (B and B') belonging to Alice (Bob). The first pair
of subsystems shared by Alice and Bob is of qubit structure,
ie., Hap=H,®Hy~C2®C2, while the second one has in
general the form H, g =H, ® Hp ~CW @ C%'. The ex-
plicit form of private bit is

1

1
2 — . .
71(41;A’B’ == 5‘20 lii)jj| © Uiparp U7,
ij=

(2.1)

where {|ij)} is the standard two-qubit product basis in H 4z,
pa g denotes some state acting on H, 15, and U; (i=0,1) are
some unitary operations. The structure of the private bit can
be divided into two parts [5]. The first one (AB) called key
part is the one from which Alice and Bob can get a bit of
secure key after local measurements in the standard bases.
The second part (A’B’) is called shield part (in the case of
approximate private bits this part in a sense “defends” the
key in system AB from an eavesdropper in the asymptotic
regime [5]). We must stress that the private bit contains the
perfectly secure bit of key while it can be approximated by
bound entangled states in the sense that there exists a se-
quence of private bits y,iz) with the dimension of their shield
parts H;k,) p going to infinity and another sequence of bound

entangled states @, such that for any e there exist k such that
||7’/(<2)—Qk|| =e. The latter has been proven to imply that a
bound entangled state can contain a secure bit up to arbitrary
precision measured by € in the sense that the eavesdropper
information about the shared bit is bounded by some con-
tinuous function of e that vanishes for e=0 (see Ref. [5]). In
general one has a perfectly secure bit (no Eve’s knowledge
about the bit) for €=0, i.e., when the observers share just a
private bit. It turns out that this exact case can never happen
when the observers are given bound entanglement since, ac-
cording to the main result of the present paper, a private bit is
always distillable.

Having reviewed the structure of )/(2), we can start a de-
scription of distillation protocol. We define the following
parameter
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n=max|(¢,| ® <fl|U0PA’B’UT|62> @ ), (2.2)

where the maximum is taken over all normalized product
vectors |e,)®|f)) and |e,) ® |f,) belonging to H,/p:.
One immediately infers that

n = max I[UOPA’B’UI]m,u,,nVI > 0?
m,n=0,....ds—
u,v=0,....dg—1

where strict positivity follows from the fact that the matrix
representation [Uopprp U} lnuny of the nonzero operator
Upparp'Ul in standard basis {|ij)} must have at least one
nonzero element. Let |&)®|f;) and |&)®|f,) be product

vectors from M, for which the maximum in Eq. (2.2) is
achieved. Then we define numbers

ag = <e~x| ® (]?S|Us—1pA'B’Uj—1|e~s> ® I.?x> (S = 1’2)

These numbers are always positive and the square root of
their product is bounded from below by 7 (see Ref. [11]).
Now we are in a position to show the distillability of Y. Let
us assume that a,=a;>0. Then we define local operators

o ar
Vaar = |0X0] @ (&) + | —e
as

0 = arg[(&)| @ (f\|Upparp Ujl2r) ® )],

with

and

Py =[0X0] ® (1| + 11| ® (.
The above operators can be used in the LOCC operation of
two-way type. The operation (called two-way local filtering)
produces with probability a; >0 the state

2 ¥ T
VAA/ & PBB/’}/I(AI;A,B;V‘A, ® PBB/
T Vs © PogVipars Vir © Pig |
=p|\I’+><\I’+ (2.3)

with p=(1/2)(1+7/ Ja,a,) and two Bell states [W,)
=(1/y2)(|00y+|11)). Distillable entanglement of a two-
element mixture of Bell states is known to be [12,13]
Ep(@)=1-H(p), where H(p)=-plogp—(1-p)log(1-p)
and can be achieved in the so-called hashing protocol [13]. If
a; =a,, one applies the same procedure with only one modi-
fication, i.e., putting the local filter W, =va,/a,e”®V,, in
place of V,,,. The resulting state is equal to the same mix-
ture of Bell states (2.3) as in the previous case, but the prob-
ability of its production is now a,. Combining these two
observations we have the lower bound on distillable en-
tanglement of 2,

1 7
E (7 ) max|:1_H<2+2V/E):|’ (24)

QE

where the factor a,,,,=max[a;,a,] is the maximum of two
probabilities of production of the considered two-qubit Bell
states mixture. It should be emphasized that >0 and there-
fore the Shannon entropy in Eq. (2.4) is less than one, which
results in the strict positivity of the right-hand side (RHS) of
Eq. (2.4). Thus a bipartite private bit is always a distillable
state.
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B. Distillability of multipartite d-dimensional private states

Here we shall provide a generalization of the result to any
multipartite version of a bipartite d-dimensional private state

(hereafter denoted by 7;‘2 v OF shortly by Y9) [4,5]. Mul-

tipartite d-dimensional private states play a natural role in the
generalized scheme of distillation of a secure key in a mul-
tipartite scenario [14]. As mentioned, the special case of the
present result, namely, the ¥'¥) one has already been applied
in an unconditional security proof with a small distillable
entanglement [8].

A multipartite d-dimensional private state is a natural gen-
eralization of the private bit (2.1) both in the “size” of the
key part (increased for any local observer from dimension 2
to d; this leads to log d of secure bits of key [4]) and in the
number of observers involved [14]: from two observers
Alice (AA’) and Bob (BB') to N  ones
{(4147),(4,4%), ... ,(AyAR)}. Tt obviously reproduces the bi-
partite d-dimensional private state [4] in the case of two

observers. The form of a multipartite (N-partite)
d-dimensional private state is
d .
Fx&,:—z li.. l><]..._]|®U,‘QArUJ

l 0

The above state is éleﬁned on a Hilbert space Haa=Ha
QHpa=(Hy ®  @H,y )®(HAr® ®HA;\) Here the
system A=A1 Ay 1s of da®N type (one has N systems of
d-level type instead of two systems of qubit type) with the
standard basis {|i;--iy)}. The density matrix Qar--ar, acting
on a Hilbert space Ha: is responsible for the shield part of
F'(LV)\, and, as previously, U; (i=0,...,d—1) are certain uni-
tary evolutions.

The distillation scheme may be found using similar tech-
niques as for private bits. Therefore for fixed i and j
(i<j, i,j=0,...,d-1) let us define

77 = max|[(f)| ® -+ @ (fy|UieaUllg)) @ -

® |gn),
(2.5)
where the maximum is taken over all normalized product

vectors from H . Similarly as in the private bit case we also
define

a(lij) — <7(1,j)| Q -
and
a(zl]) — <g(l,])| ® -

VIveaUllfi @ -+ o i)

"(U)|U Opr UT|"(11 e ® |g(]\l}j)>’

where [y @A) and |37 ® - ® |3 are vectors
realizing a maximum in Eq. (2.5). In a full analogy to the
case of a private bit, one checks that (cf. [11]) 0< 7
=\a (’j) . Again, if for a given pair of indices {i,j}
(i <J) one has ag”)>a(”)>0 we define

Vi =il @ G+ NalPial e @iyl © (&

A’_

>

where
@ijzarg[(ﬁij” AN Uea Ul - |~(U)]
(if)

while in the case alij)Zagj)>0 we take WA A
1
/ (l])/a(ll —1@,/‘/( /) :

=va Finally we introduce
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p<’f (= lixil e GO+ 1)l @ @Y (k=2,....N).

In both cases for given i and j (i<j), we shall obtain the
same state but with different probabilities, a(l”) in the first
case and a(zl" ) in the second one. The corresponding LOCC

filtering performed by all N parties [the ﬁrst party uses sz L,
(if)

or W Al 1«4
the formula (2.3)] finally gives the state

while all the others apply pY 4 In full analogy to

o) = p DT PNT D] + (1 - pD)FINTD] - (2.6)
which is the mixture of two projectors onto the GHZ states
[BY=(1\2)(fiiyxlj-)  with  pi=(1/2)[1
+ 77<ij)/(a<ll])a(2’j))l/2]. Using the GHZ distillation hashing pro-
tocol [15] (which is a generalization of that from Ref. [13])
and taking into account the fact that here one has only the
so-called phase error (corresponding to the sign * in the
above formula), we get a lower bound for the distillation rate
of the GHZ states from F AA, in the scenario with chosen

filtering corresponding to a fixed pair of indices {i,;} as be-
low

. . 1 i) 0
i) \ = (i) _ R A I (7))
Ej (FAA,)_amaX[l H(2+ \/W Ej
with a(”) being the bigger from two numbers a(”) and a(”)
Again, since all %) are positive, the above lower bounds are
strictly positive too, which results in the distillability of GHZ
from any multipartite d-dimensional private state. Since we
can optimize over choices of {i,j} we get the final lower
bound on the distillable entanglement of FX’Z,
max Egj),

i,j=0,....d~1

: o .o =) .

which again is strictly positive since, as previously proven,

ED(FAAI) =

all quantities Eg’ ) are strictly positive.

The above protocols are working for any dimensions d.
However, for d=4, further generalization of efficiency of
distillation protocol can be introduced. This is because all
local projections are here two-dimensional. It is easy to gen-
eralize the above scheme in such a way that instead of single
filtering of that type, we perform the positive operator-valued
measure (POVM) involving k filterings (2k=d) which are
locally orthogonal in the sense that their supports (subspaces
on which they give nonzero results) are disjointed. Each of
the results corresponding to the kth result of POVM would
produce some mixture of type (2.6). Such a scheme would
be, to some extent, analogous to the distillation of entangle-
ment from the mixtures of locally orthogonal states [16] that
was independently analyzed also in Ref. [17].

III. BOUND ON A DISTILLABLE KEY: AN ALTERNATIVE
PROOF

In this section we come back again to the bipartite sce-
nario. We bound from above the amount of a distillable cryp-
tographic key K,(@) of any given state @ by its entanglement
cost E-(p). This fact has already been proven in Ref. [5]
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through the regularized relative entropy of an entanglement
bound on a distillable key. The present proof has a more
direct character and is based on the well-known facts from
the theory of entanglement measures [ 10]. Tt also exploits the
special structure of the eigenvectors of the bipartite
d-dimensional private states.

The crucial role is played here by the asymptotic continu-
ity of an entanglement of formation [13] proved by Nielsen
[18] and the fact that an entanglement cost which has a rather
complicated definition (see Ref. [10]) may be related to an
entanglement of formation in a simple way by [9]

®m
Ec(p) = lim F(Z ) (3.1)

for any given state p. Moreover, for these two measures we
have E(A(p))=<E(p) with A being some LOCC protocol
[19].

At the very beginning we show that the entanglement of
formation of y;d; A, B, [4] corresponding here just to the bipar-

tite version of I‘AA, with d being the dimension of H,

(equivalently Hjp), may be bounded from below by logd.
This can be obtained simply by utilizing the definition of
entanglement of formation, which for a given density matrix
p acting on the Hilbert space H, ® Hp reads

Ep(p) = HTin E PiSun(Trg|WX(W ),
where the minimum is taken over all ensembles {p;,|V)}
generating the state p and S,y stands for the von Neumann
entropy [20].

Consider now the state 'yidl; - One may easily see that

all of its eigenvectors corresponding to nonzero eigenvalues
are
d-1 d-1

1 'n!
o) = rE if) @ Ujlefy = dE i) @ lefi ™).
=0

An arbltrary vector |W,) from any ensemble {p,,|¥,)} realiz-
ing the considered state must be a linear combination of the
above eigenvectors |¢). This is a consequence of the fact,
proven in Ref. [21], that the vector |¥;) belongs to Rany'¥,
which in turn is a subspace spanned by elgenvectors |¢k>
Therefore it is not difficult to see that |¥;)=(1/ \d)E ol

|~(A )Y must hold for some vectors |(p(A 5. Entangle-
ment of formation of the vector |W;) can be’ easily estimated:

1 L
Ex(|W)) = Sun(Trpp | ¥ X(¥]) = 32 SVN(*—f(A )) +log d
J

=logd,

where E H< )—Tr |<p(A B )>( ~(A B) |. Since this holds for any
vector from any ensemble of 'y(d) we have, by the very defi-
nition of Ey, the following

Property 1. For any state % one has

Er(¥)) =log d. (3.2)

Note by the way that, by inspection, one can see that the
tensor product (y'¥)®™ has a structure of ") type. Hence, a
straightforward application of Eq. (3.1) to %) in place of @
together with the above inequality leads to a stronger result,
namely one has the following property:
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Property la. For any state Y9 one has
Ec(y?) =logd.

Now we are in position to relate K, and E.. Suppose that
Alice and Bob share n copies of a given bipartite state ¢ with
Kp(0) >0 (for states with K, (0)=0 the inequality is trivially
true). Consider the optimal protocol distilling Kp(@) secret
bits from @, which is a sequence of LOCC protocols A, (n
eN), such that A,(0®")=c™ and [|c" -9, <€, for a
sequence of private states 7%’ with the key part AB defined
on the Hilbert space C% ® (4 The sequence {e,} is supposed
to converge to zero with increasing n. Since the protocol is
optimal we have by definition [5] Kj(@)=lim,(log d,/n).

On the other hand the asymptotic continuity of Ej to-
gether with its monotonicity under the LOCC protocol im-
plies the following inequalities:

1 1
—Ep(y\%) = —=Ep(a™) + ce, log d, + ole)
n n n

O(Gil)

n
for some constant ¢ and o(e,) vanishing faster than €, in the
limit of large n. Combining this with Eq. (3.2) one has

1
= —EH0°") +ce,logd, +
n

logd, log d, . o(e,)

n n
Taking the limit on both sides, utilizing Eq. (3.1), and ex-
ploiting the fact that Kp=1lim,(log d,/n), we finally get the
desired inequality that can be stated as follows (see Refs.
[4,5] for alternative proof):

Property 2. For any bipartite state Q,

1
= _EF(Q®n) +C€,
n
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Kp(@) = Ec(@).

This immediately implies K;,(0) =< Eg(@) since Er majorizes
E,.

IV. CONCLUSIONS

We have proven that any d-dimensional private state, i.e.,
state that contains logd bits of a perfectly secure key is
distillable and we have provided the explicit LOCC opera-
tions of distillation protocol. This result has already been
applied by other authors [8] in a proof of unconditional se-
curity with small distillable entanglement. We have also pro-
vided the analogous result for a multipartite d-dimensional
private state which is a part of the general scheme for the
distillation of a multipartite key [14]. The results imply im-
mediately that although from bound entanglement one can
produce an arbitrary secure bit of key (Eve’s knowledge can
be made arbitrarily small), the latter can never be perfectly
secure (Eve’s knowledge can not be made equal to zero).
Finally, exploiting the structure of eigenvectors of private
states, we have provided an elementary alternative proof of
the fact that entanglement cost is an upper bound on the
amount of distillable key of any quantum state.
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