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Bounding approach to parameter estimation without
prior knowledge on modeling error and application to

quality modeling in drinking water distribution systems

KAZIMIERZ DUZINKIEWICZ

Parameter estimation of an autoregressive with moving average and exogenous variable
(ARMAX) model is discussed in this paper by using bounding approach. Bounds on the model
structure error are assumed unknown, or known but too conservative. To reduce this conser-
vatism, a point-parametric model concept is proposed, where there exist a set of model pa-
rameters and modeling error corresponding to each input. Feasible parameter sets are defined
for point-parametric model. Bounded values on the model parameters and modeling error can
then be computed jointly by tightening the feasible set using observations under deliberately
designed input excitations. Finally, a constantly bounded parameter model is established, which
can be used for robust output prediction and control.

Key words: modeling errors, bounding method, parameter estimation, uncertain dynamic
systems, robust control

1. Introduction

The following discrete time model with delayed inputs that describes a linear SISO
time-varying and continuously-delayed system is considered:

y(t) =
Ns

∑
s=1

as(t)y(t − s)+ ∑
d∈D

bd(t)u(t −d)+ e(t) (1)

where t ∈ [t0, t0 + TM] = ΞM is a time step, TM is the considered modeling horizon,
Ns describes the dynamics of the system, y(t) and u(t) are the system output and in-
put, respectively, as(t) and bd(t) are time-varying model parameters, D is the time delay
set, and e(t) is the modeling error that is input dependent. This model can be written
compactly as:
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y(t) = φ(t)T θ(t)+ e(t),
φ(t)T =

[
y(t−1), . . . ,y(t−s), . . . ,y(t−Ns),u(t−dmin), . . . ,u(t−d), . . . ,u(t−dmax)

]
,

(2)
θ(t)T = [a1(t), . . . ,as(t), . . . ,aNs(t),bdmin(t), . . . ,bd(t), . . . ,bdmax(t)] ,
dimφ = dimθ = NR,

where
{

dmin, . . . ,d, . . . ,dmax
}

= D – ordered set of time delays. With the observation
data available, the parameter bounds on θ(t) can be computed using bounding approach
as described in [4] and [6]. Bounds on the modeling error e(t) also are needed as prior
system knowledge. However, in practice it is not trivial to obtain the tightest bounds.
This implies that otherwise a more conservative assumption on e(t) is to be applied or
the prior knowledge about e(t) could be wrong.

In this paper, instead of trying to obtain the prior bounds on e(t) in advance, it is to
be handled together with model parameters during estimation. It can be shown that there
is an internal link between the uncertainty in the parameters and the uncertainty in the
modelling error part of the model:

y(t) = φ(t)T θ(u, t)+ e(u, t) (3)

where u denotes input function of time for simplified notation, φ(t) is the same as in (2).
In the above formulation, θ and e are input dependent. Notice, that the meaning

of θ and e in (3) is different from the meaning of θ and e in (2). Actually, they are
different parameters. Only the model structure described by (2) is remained. For the
notation simplicity, we still use θ and e in further considerations. Given an input u(·),
there exists at least one θ and e that satisfy (3). As the parameter values and the modeling
error explaining the system response depend on the input the relation (3) define so-called
point-parametric model of the system.

Uncertainty in the parameters can now be linked to the modeling error uncertainty
directly. It is possible now to trade off the uncertainty distribution between the parameter
part and the modeling error part and to estimate them jointly. Hence, a less conservative
uncertainty model is conceivable. However, a dedicated input excitation design is needed
in order to get sufficiently rich information in the system outputs. It means that with this
information, it will be possible to find such parameter - error set in the parameter and
modeling error space that for any output there exist the parameter and error values in this
set that the model with these parameter - error values, can produce the plant output. Of
course, it is impossible to try all system input signals. It will be shown that it is necessary
and sufficient to excite the plant by a finite number of inputs that are specially designed.

The uncertainties in the system may be located in the parameters and in the modeling
error part of the model. This results in two types of possible model structures differing
in uncertainty allocation. The first type of the model allocates all of the uncertainties in
the system into the model parameters, resulting in:

y(t) = φ(t)T θ(u, t) (4)
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BOUNDING APPROACH TO PARAMETER ESTIMATION 53

where the parameters must be time-varying in order to make the model capable of ex-
plaining the system output.

Alternatively, the uncertainties in the system can be explained by a constant param-
eter and a time-varying modeling error part together:

y(t) = φ(t)T θ(u)+ e(u, t). (5)

Notice that u denotes function of time and θ(u) is the corresponding constant parameter
value. In both cases, the parameters and the modelling error part are input dependent.
In the paper, without lost of generality, only the model described by equation (5) is
considered.

The paper is organized as follows, in Section 2 the point-parametric model is defined
and an algorithm is derived in order to estimate its parameters and the modeling error. As
the model is point-parametric, the parameter and modeling error estimation problem is
formulated accordingly. An experiment design for parameter estimation in open - loop is
discussed in Section 3. The set - bounded model of uncertainty implies the set - bounded
structure of the model based predictions. An uncertainty radius of the bounds on the
predicted system output (robust prediction) is defined in Section 4 in order to assess the
model uncertainty. In Section 5 the proposed methodology and algorithms are applied
to the quality modelling in the drinking water distribution system. Finally, Section 6
concludes the paper.

2. Point-parametric model and the parameter estimation algorithm

2.1. Point-parametric model

We shall start with defining the point-parametric model in which the parameters are
constant but input dependent and the modeling error is time varying.

Definition 1: The model described by the equation (5) is said point-parametric iff for
any input scenario u(·) and the corresponding system output y(·) there exist a pair
{θ(u(·)),e(u(·), ·)} such that equation (5) recursively generates the sequence of the
model outputs yM(t), t ∈ ΞM that are equal to the system output y(t), for any t ∈ ΞM,
that is the following holds

∀t ∈ ΞM : y(t) = yM(t). (6)

Notice, that the parameters and modeling error trajectory {θ(u(·)),e(u(·), ·)} sat-
isfying (6) is perfectly capable to explain the system output. Hence, we shall further
call these parameters and modeling error trajectory as input consistent. Typically, for
given input scenario u(·) there is more than one consistent pair {θ(u(·)), e(u(·), ·)}.
A set of all consistent pairs is called a feasible set of the parameters and modeling error
trajectories corresponding to the input scenario u(·). Let us denote the feasible set as
Θ f (θ(u(·)),e(u(·), ·)).
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In order to exactly predict based on the point-parametric model a system response to
any input from a certain class U the consistent pair needs to be known for any u(·) ∈ U.
It would be an immense task to determine all such pairs. It is assumed that the class
U contains only the scenarios that are valued on a compact set U , that is u(t) ∈ U ,
t ∈ ΞM. It will be shown in Section 3 that an orthotopic outer approximation of the setS

u(·)∈U{θ(u(·)),e(u(·), ·)} can be produced by knowing the system responses only to
finite number of input scenarios uj(·) ∈ U, j = 1,NE . Moreover, the orthotopic outer
approximation achieves a good trade off between the experimental effort, in a case of an
open - loop estimation or between information base, in a case of closed - loop estimation,
and the estimation accuracy, hence the system output prediction accuracy. Being the
orthotope (see Fig. 1) the outer approximation is determined by the lower and the upper
bounds [θ l

out,i θ u
out,i], i = 1,NR on the parameters and by the lower and upper bounds

[el
out,i eu

out,i] on the modelling error. Let

θl = [θl
1, . . . ,θ

l
i , . . . ,θ

l
NR

]T ,

θu = [θu
1, . . . ,θ

u
i , . . . ,θ

u
NR

]T .

Let us denote for notational simplicity

θ j � θ(uj(·)),

e j(t) � e(uj(t), t).

Hence, {θ j,e j(t)} is the consistent pair with the input scenario uj(·). Given vectors
of the parameter bounds θl , θu and the modeling error bounds el , eu, Θ(θl ,θu,el ,eu)
denotes an orthotope determined by the bounds θl,θu,el ,eu. It is straightforward to
show that the following Lemma 1 holds.

Lemma 1: The orthotope Θ(θl ,θu,el ,eu) is an outer approximation of the setS
j=1,NE

{θ j,e j(·)} iff ⎛⎝ [
j=1,NE

{θ j,e j(·)}
⎞⎠ ⊆ Θ(θl ,θu,el ,eu).

The orthotope Θ(θl ,θu,el,eu), which is an outer approximation, is denoted
Θout(θl

out ,θu
out ,e

l
out ,e

u
out).

Let us notice that every input-output experiment with the input uj(·), j = 1,NE

brings new consistent pair {θj,e j(t)} that must be added to the set of consistent pairs
that have been produced so far. It is the fundamental difference between classic bound-
ing approaches used in the parametric model parameter estimation and the parameter
bounding in the point-parametric models. Hence, for the point-parametric models an
approach and the corresponding algorithms must be derived. The outer approximation
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Figure 1. An outer approximation

may be more or less conservative. Among all the outer approximations we shall
distinguish the one that is least conservative and call minimal outer approximation.

Definition 2: Let be given the experiment set uj(·), j = 1,NE. A minimal volume outer
approximation θmin

out of a set of all consistent pairs {θj,e j(t), j = 1,NE}is called minimal
outer approximation.

The vector (θl,θu;el ,eu) that determines the minimal outer approximation will be de-
noted (θl,min

out ,θu,min
out ;el,min

out ,eu,min
out ). Hence

Θmin
out = Θ(θl,min

out ,θu,min
out ;el,min

out ,eu,min
out )

The set Θmin
out is illustrated in Fig. 2. Clearly, the input - consistent pair link is not mapped

in the set Θmin
out that is plain. However, this is sufficient for the robust prediction that

produces not exact system output, but the lower and upper envelopes that bound this
output. All we can achieve with the prior and measurement information at hand is to
minimise the bounding conservatism that is to make the bounding envelopes as close as
possible. Although the minimal approximation is appealing it still can be improved with
regard to the resulting robust prediction conservatism. Indeed according to Definition 1,
for selected input scenario there exist many values of the consistent pairs. It is enough
for the robust prediction to guarantee that for each input uj(·), j = 1,NE there exists at
least one consistent pair that belongs to the set-estimate Θest . An example selection of
such set Θest is illustrated in Fig. 3 where the minimum volume Θmin

est is also shown. The
sets having impact on the prediction conservatism are illustrated in Fig. 3 in dark grey.
The benefit of using the set Θest or Θmin

est instead of the minimal outer approximation set
Θmin

out is now clearly seen.
The least conservative robust parameter estimation problem (LCRPEP) can now be

formulated as follows. Let the sets of the input scenarios and the corresponding system
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Figure 2. Minimal outer approximation

 

 

 

 

 

    

 
 

  

Figure 3. Parameter set – estimates Θest and Θmin
est

output trajectories uj(·), j = 1,NE and yj(·), j = 1,NE be given.

(LCRPEP 1):
minimize { Volume of Θest}. (7)
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BOUNDING APPROACH TO PARAMETER ESTIMATION 57

It is pointed out again that the set Θmin
est = Θmin

est (θl,min
est ,θu,min

est ;el,min
est ,eu,min

est ) is not an outer
approximation set but the following holds

Θmin
est = Θmin

est (θl,min
est ,θu,min

est ;el,min
est ,eu,min

est ) ⊆ Θmin
out = Θmin

out (θ
l,min
out ,θu,min

out ;el,min
out ,eu,min

out ). (8)

2.2. Parameter estimation algorithm

We shall now derive an algorithm for determining an optimal robust model param-
eter and modeling error set-estimate Θmin

est . In order to obtain the efficient and reliable
algorithm we shall assume an orthotopic shape of the parameters-error-estimate set. Mi-
nimizing the volume of the Θest in (7) can be performed by minimizing the orthotope
diagonal that can be expressed as

(Θu
est −Θl

est)
T (Θu

est −Θl
est)+ (eu

est − el
est)

2. (9)

In order to provide for a mechanism to tune the uncertainty distribution between the
modelling error and the parameter values so that uncertainty impact on the set-estimate
conservatism can be minimised the weighting matrix P and scalar Q are introduced into
(9) as follows

(Θu
est −Θl

est)
T P(Θu

est −Θl
est)+Q(eu

est − el
est)

2. (10)

The estimation algorithm can now be written as

(LCRPEP 2):

[θl,min
est ,θu,min

est ;el,min
est ,eu,min

est ] = arg min
θl

est ,θu
est ,θ j;el

est ,e
u
est ,e j(·)

J(θl
est ,θ

u
est ;e

l
est ,e

u
est), (11a)

satysfying : [θ j,e j(·)] ∈ Θest(θl
est ,θ

u
est ;e

l
est ,e

u
est), j = 1,NR, (11b)

θl
est � θl

out , θu
est � θu

out , (11c)
el

est � el
out , eu

est � eu
out ,

where J(θl
est ,θu

est ;e
l
est ,e

u
est) = (θu

est − θl
est)T P(θu

est − θl
est) + Q(eu

est − el
est)2. Notice that

the left hand sides of the inclusions (11b) are just the pair that are consistent with the
input scenarios uj(·). Hence the variables θj; e j(t), t ∈ ΞM must satisfy the consistency
condition (6) and the constraints (11b) can be written in a form that is explicit with
respect to the search variables θj; e j(t), t ∈ ΞM, j = 1,NE . Finally the parameters-error
estimation problem reads

(LCRPEP 3):

min
θl

est ,θu
est ,θ j ;el

est ,e
u
est ,e j(·), j=1,NE , t∈ΞM

imize J(θl
est ,θ

u
est ;e

l
est ,e

u
est), (12a)

with respect to : yj(t) = φ j(t)T θ j + e j(t), t ∈ ΞM, j = 1,NE , (12b)
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θl
est � θ j � θu

est , j = 1,NE , (12c)
el

est � e j(t)� eu
est , t ∈ ΞM, j = 1,NE .

Notice, that the LCRPEP given above is a strictly convex linear - quadratic optimiza-
tion problem. Hence, an interior-point algorithm [5] can be used as the efficient solver.
Apparently, a result of LCRPEP solving depends on the experiments. The experiment
design will be discussed in the subsequent section.

Finally, a point-parametric model with constant bounded parameters and time-
varying bounded modeling error can be obtained as:

y(t) = φ(t)T θ+ e(t) (13)

[θ;e(t)] ∈ Θmin
est , Θmin

est =

{
(θ;e(t)) ∈ ℜNR+1 : θl,min

est � θ� θu,min
est ;

el,min
est � e(t)� eu,min

est

}
.

The least conservative constant bounded parameters and time-varying bounded modeling
error model (13) is sufficient for robust control design [1].

2.3. Remarks on parameter estimation under measurement errors

Under measurement errors and input noises, outputs and inputs in regressor φ(t)
become unknown values. Thus, parameter estimation problem becomes more complex,
which is often referred to as ‘error-in-variables’ in set-bounded estimation whereas esti-
mation problem without measurement errors is referred to as ‘error-in-equation’ estima-
tion problem when the inputs and outputs are exactly known [4].

The definition of the feasible parameter set under point-parametric model in the
error-in-variables case become more complicated. A constructive formulation of the es-
timation problem is under current research.

3. Experiment design

3.1. Representation of inputs

The system input in practice is usually restricted by actuator performance and oper-
ational limits. The input constraints can be expressed as:

0� umin � u(t)� umax, for any t. (14)

Also, it is assumed that a system response to any admissible input scenario satisfies

y(t)� 0, for t ∈ ΞM. (15)

Then, any input scenario u = [u(1), . . . ,u(Nt)] over time horizon t = 1,Nt can be viewed
as a point in Nt dimension Euclidean space bounded by a cube with r vertices, and
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Figure 4. Input scenario vectors in Euclidean space

r = 2Nt . The example of such input vector in 3-dimension case, where Nt = 3 is illustrated
in Fig. 4. For parameter - error estimation problem over time interval ΞM the following
information is needed:

• output trajectory over time interval ΞOUT = ΞM = [t0, t0 +TM],

• input scenario over time interval ΞIN = [t0 −dmax, t0 +TM −dmin],

• past system output values over time interval Ξp = [t0 −1, t0 −Ns].

The above constitute the input – output information that determines the system output
over the modeling horizon TM.

3.2. Experiment design

Given t ∈ ΞM let us consider jth vertex of the orthotope in Fig. 4. Let us define an
input scenario uj(·) as

uj(t) = umin or umax, t ∈ ΞM. (16)

It means the input scenario defined by (16) is built up from limit values of the input
variable. Hence, it will be called jth vertex input scenario and j = 1,NE . Hence, any
admissible input scenario u(·) can be expressed as a convex combination of the orthotope
vertices that means as a convex combination of the vertex input scenarios [3]. It means
that considering the time horizon TM, any admissible input at the time instant t ∈ ΞM can
be expressed

u(t) =
NE

∑
j=1

λ ju
j(t), t ∈ ΞM (17)

where ∑NE
j=1 λ j = 1 and λ j � 0, j = 1,NE .

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


60 K. DUZINKIEWICZ

Let y j(t), t ∈ ΞM be the output response corresponding to the input uj(t), t ∈ ΞM.
Clearly,

y j(t) = φ j(t)T θ j + e j(t), t ∈ ΞM (18)

where {θ j,e j(·)} is consistent with the jth vertex input scenario uj(·). Let

∀ j = 1,NE : ∃{θ j,e j(·)} ∈ Θver(θl
ver,θ

u
ver;e

l
ver,e

u
ver)

where Θver(θl
ver,θu

ver;e
l
ver,e

u
ver) is bounded orthotope with finite θl

ver, θu
ver, el

ver and eu
ver.

Selecting the input excitations for the parameters-error estimation purposes can be
based on the following theorem.

Theorem 1: For any admissible input scenario u(·) there exists {θ,e(·)} ∈
Θver(θl

ver,θu
ver;e

l
ver,e

u
ver) that is a pair consistent with the input scenario u(·).

A proof of the Theorem 1 is given in Appendix.
Indeed, solving the least conservative robust parameter-error estimation problem

(LCRPEP) for the input scenario set {uj(·), j = 1,NE} yields the parameter-error set
– estimate Θmin

est (see Fig. 3). Clearly, by a definition of Θmin
est for any input scenario

uj(·), j = 1,NE there exists the consistent pair {θj,e j(·)} that belongs to Θmin
est . Hence,

according to the Theorem 1 for any admissible input scenario u(·) there exists in the set
Θmin

est a consistent with this input pair that explains the corresponding system response. In
other words the input scenarios uj(·), j = 1,NE are sufficient to excite the system in order
to gather the output information so that corresponding LCRPEP yields the parameter -
error set - estimate containing the parameter - error pairs that can explain any admissible
input.

3.3. Summary and remarks

The following remark is given for the parameter estimation algorithm based on point-
parametric model:

• The number of the needed experiments, NE = 2Nt , increases with the modeling
horizon. Thus, with larger Nt , the computing task in solving the optimisation prob-
lem dramatically augments.

• The computing efficiency can be improved in practice by reducing the experiment
number in the following way:

1. Replace the vertex-base inputs by a number of random-base inputs. After
obtaining the bounded model, it can be checked whether the estimation re-
sults are consistent with the responses to the vertex-base inputs. Increase the
number of random inputs until satisfactory model is obtained.

2. Find a polytope with less vertices that can bound the cube space containing
the inputs. Use the vertices of the new polytope as the experiment inputs.
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• An input range umin � u(t)� umax is required in the experiment design. However,
larger input range results in larger uncertainties in the obtained model parameters,
which is the price to be paid.

4. Assessing the model uncertainty

Output prediction performed based on the obtained set-bounded models described
by (13) is under uncertainty as well. Given the input scenario, a robust prediction of the
corresponding outputs over a prediction horizon Hp can be calculated that are consis-
tent with the model uncertainty. The upper and lower envelopes that bound the output
trajectory set determine a set in the output space in which a real output is contained,
provided that the uncertainty model is convincing. This is illustrated in Fig. 5, where the
robust prediction is carried out at time instant t. The bounding envelopes are yl(t + k|t),

 
 

 

 

Figure 5. Robust output prediction

y u(t + k|t), and they can be viewed as producing at time t the worst case k step out-
put prediction, which belongs to a output set Yp

k that is composed of all possible output
trajectories:

Y p
k �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(t + k|t) ∈ ℜ :
y(t + 1|t) = φ(t + 1)T θ+ e(t + 1)

...
y(t + k|t) = φ(t + k)T θ+ e(t + k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for k = 1,Hp (19)

where θl � θ� θu and el � e(t + i)� eu for i = 1,k.
The above formulation is a batch type as in defining the output set at time instant

t + k all the previous output equations from t + 1 are contained, which are constraints
on y(t + k|t). In order to achieve sufficient accuracy and at the same time to reduce
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62 K. DUZINKIEWICZ

computation complexity, formulations of recursive algorithms with moving information
window have been discussed in [2].

Let the bounds on θ and e(t) be from the model obtained in the previous section. The
robust output prediction is defined as:

y l
p(t + k|t) = arg min

y(t +1|t), . . . ,y(t + k|t),
θ,

e(t +1), . . . ,e(t + k)

y(t + k|t),

(20)
with respect to : y(t + k|t) ∈Y p

k

and

y u
p (t + k|t) = argmax

y(t +1|t), . . . ,y(t + k|t),
θ,

e(t +1), . . . ,e(t + k)

y(t + k|t)

(21)
with respect to : y(t + k|t) ∈ Y p

k

There are product terms of variables in (19), hence, solving (20) and (21) is a non-
linear programming problem with continuous and discrete variables. The problem is
solved by first applying linearization and next by using efficient Mixed Integer Linear
Programming (MILP) solver [2]. An output prediction envelope can be generated over
prediction horizon Hp as:

Y l
p = [yl

p(t + 1|t), . . . ,yl
p(t + k|t)], k = 1,Hp,

Y u
p = [yu

p(t + 1|t), . . . ,yu
p(t + k|t)], k = 1,Hp.

In order to assess model uncertainty impact on the robust output prediction accuracy
so-called an uncertainty radius is defined as:

W = max{Y u
p −Y l

p}, under u(t) = 1(t) (22)

where 1(t) defines a unit step input. In order to extend the feasible input set that the
controller operates on, a least conservative output prediction is wanted. Requirements
on desired model accuracy for robust controller design can be expressed by an upper
limit on W . Through W the model estimation is related to the controller design directly
and the model design and the controller design can be performed in an integrated way.

5. Application to quality modeling in drinking water distribution systems

The point-parametric model has been used for quality modeling in Drinking Wa-
ter Distribution System (DWDS). Drinking water is usually taken from sources such as
rivers, lakes, or underground wells. Raw water is treated in the water treatment plant
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BOUNDING APPROACH TO PARAMETER ESTIMATION 63

(WTP) to remove unwanted substances and to kill pathogens. The treated drinkable wa-
ter from the water plant is then transported to demand nodes by drinking water distribu-
tion systems. DWDS is large-scale network systems composed of pumps, valves, storage
tanks and demand nodes connected together by pipes. Maintaining disinfectant concen-
tration over the DWDS within prescribed limits is called quality control. A number of
chemical disinfectants can be used in the DWDS, e.g. chlorine, chlorine dioxide, chlo-
ramines and ozone. The most common disinfectant is chlorine, as it is inexpensive and
effective. From the viewpoint of control technology, we are interested in the dynamic
properties of the disinfectant concentration when added to water. The methodology de-
veloped for a particular chemical can be used for other chemicals without many difficul-
ties. The modeling of chlorine concentration in DWDS was considered as an application
of the point-parametric model. The developed methodology can be extended to other
disinfectant application in DWDS.

Three main aspects govern chlorine concentration in DWDS: transportation, mixing
and reaction kinetics. The first two aspects depend on the hydraulics of the DWDS.
The water demand is time varying and results in time-varying hydraulics. The predicted
water demand is assumed to be constant over hydraulic control step. The prediction error
implies the uncertain hydraulic information. Chlorine reaction kinetics is a complicated
chemical process that is still under research. Only first- and second-order mathematical
models are generally applied at present. Uncertainty in the modeling error resulting from
the above factors need to be appropriately embedded into the system model.

Transportation delay is the main feature in the chlorine concentration modeling in
DWDS. Driven by varying hydraulics, the time-delay is continuous and time varying.
As it is still difficult to process continuous time-varying delays in model estimation
and control design, the continuous time delay is discretized over certain time horizon.
However, the discretization leads to modeling errors, and it is difficult to analytically
evaluate the error so that the less conservative prior error bounds would be produced.
In this case, applying the point-parametric model concept helps to better evaluate the
modeling error.

There is no explicit relationship between chlorine injections in the injection nodes
(system control inputs) and chlorine concentrations in the monitored nodes (controlled
outputs). In the controller design and operation an explicit relationship between input
and output is usually wanted. First explicit input-output (IO) model was proposed by [7].
A backward tracking algorithm was proposed in order to obtain structure of the input-
output model. This algorithm is called path analysis of chlorine transportation through-
out the DWDS. The transportation time-delay in this input-output model is continuous
in time and time varying. The range of the continuous time-delay over the modeling
horizon is then discretized and approximated by a series of time delay numbers. The ex-
istence of storage facilities enlarges the detention time from the input node to the output
node and introduces dynamics in the model. Thus, more model parameters are added.
The final model with tanks in the DWDS has an autoregressive with moving average and
exogenous variable (ARMAX) format given by (3).
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The conceptual DWDS in Figure 6 is taken from EPANET package (Rossman,
2000). It is a simple small DWDS of the SISO type with the chlorine injection at node 11
and the chlorine concentration monitoring at the node 32. Modelling of chlorine dynam-
ics of this DWDS over a 24-hour horizon was considered. Path analysis was performed
first to obtain the parameter structure of the model. The discretisation time step is 10
minutes. Thus, the 24-hour horizon is discretised into 144 time steps. There are 8 water

 

  

 

 

 
 

     

 

  

 

 

  

  

  

  

 

Figure 6. A sample DWDS network

consumption nodes in this DWDS linked with 10 pipes. The predicted water demand
pattern at different nodes is assumed the same and the pattern time step is 2 hours. An
example of the water demand at node 32 over the 24-hour modeling horizon is shown
in Fig. 7. The water is pumped from the source (node 9) and it is also supplied from the
tank (node 2).

As the examples, the upper and lower bounds of values of the parameter denoted b9
over the 24-hour horizon is shown in Fig. 8, while the bounds of the parameter aD,10

and aF,2 values are illustrated in Fig. 9 and Fig. 10 (the subscripts D and F are related
to a draining and filling cycle of the switching tank operation). It can be seen from the
figures that the IO quality model parameter bounds are piece-wise constant over the time
horizon. The real parameter trajectory over the time horizon is time-varying and could
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Figure 7. Water demand predictions at node 32

  

 

Figure 8. Parameter bounds of b9

be any trajectory within the upper-lower bounded envelopes. Taking the centre of the
bounds as the nominal value of the parameter value, a nominal model can be obtained.
The model performance is illustrated in Figure 11 by applying chlorine injection as
the step input of amplitude 0.25[mg/l]. By changing the weight of the P and Q in (10)
the uncertainty allocation in the parameters part and the modelling error part can be
changed. Using uncertainty radius W as the index of estimated model uncertainty, the
output predictions are compared and assessed for difference weight setting.

There are 8 samples and 6 experiments, Nt = 8, NE = 6. The parameters correspond
to time delay number 12 to 16, thus the parameters are b12, b13, b14, b15, b16. The output
prediction is calculated assuming a step input u(t) = 1.8× 1(t). The following uncer-
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Figure 9. Parameter bounds of aD,10

 

Figure 10. Parameter bounds of aF,2

 

Figure 11. Step response of the IO model
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BOUNDING APPROACH TO PARAMETER ESTIMATION 67

tainty radius have been found with different combination of P and Q:

P = 1, Q = 10, W = 0.3615
P = 1, Q = 5, W = 0.2742
P = 1, Q = 1, W = 0.1603
P = 1, Q = 0.5, W = 0.1462
P = 1, Q = 0.1, W = 0.1576
P = 1, Q = 0.05, W = 0.1611

It can be found that the uncertainty radius W is minimum at P = 1, Q = 0.5 according
to the simulation data. However, how to find the optimal value of P and Q that make W
global minimum is still an open problem.

6. Conclusion

Bounding approach to parameter estimation based on a point-parametric model has
been developed to reduce the conservatism caused by inaccurate prior knowledge of the
modeling error. For a robust MPC a bounded-parameter model is sufficient for controller
design and operation. In this case, it is not necessary that nominal model outputs must
exactly fit plant outputs. If in the robust output prediction, the upper and lower envelopes,
can bound the plant output with a desired accuracy, then the model is considered suffi-
ciently accurate for the controller design and operation. This has been illustrated in Fig.
11 for IO quality model. Simulation results have showed that less uncertainty can be
achieved by tuning weighting matrices in the parameter estimation problem.

Appendix. Proof of the theorem 1

Let y j(t), t ∈ ΞM be the output response corresponding to the admissible input
uj(t), t ∈ ΞM. Due to the definition of {θj,e j(·)}, j = 1,NE and (18) for each vertex
input scenario the following hold:

(φ j(t1))T θ j +e j(t1) = y j(t1)
...

. . .
...

(φ j(t))T θ j +e j(t) = y j(t)
...

. . .
...

(φ j(tNt ))
T θ j +e j(tNt ) = y j(tNt )

and
[θ j,e j(·)] ∈ Θver(θl

ver,θ
u
ver;e

l
ver,e

u
ver); t ∈ ΞM.
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68 K. DUZINKIEWICZ

Due to (17)

u(t) =
NE

∑
j=1

λ ju
j(t), λ j � 0,

NE

∑
j=1

λ j = 1, t ∈ ΞM.

Hence, the corresponding output satisfies

y(t) =
NE

∑
j=1

λ jy
j(t), λ j � 0,

NE

∑
j=1

λ j = 1, t ∈ ΞM

and (see (2))

φ(t) =
NE

∑
j=1

λ jφ j(t), λ j � 0,
NE

∑
j=1

λ j = 1, t ∈ ΞM.

Let us define

µj
k(t) =

λ jϕ j
k(t)

∑NE
j=1 λ jϕ

j
k(t)

; j = 1,NE , k = 1,NR,

θk =
NE

∑
j=1

µj
k(t)θ

j
k, (23)

e(t) =
NE

∑
j=1

λ je
j(t),

where ϕ j
k and θ j

k are the kth components of the vectors φj and θ j, j = 1,NE , respectively.
We shall now show that the pair {θ,e(·)} defined by (23) is consistent with the input
u(·). Indeed the following hold:

φ(t)T θ+ e(t) =

=

[
NE

∑
j=1

λ jφ j(t)

]T

θ+ e(t) =
NR

∑
k=1

[
θk

NE

∑
j=1

λ jϕ
j
k(t)

]
+ e(t)

=
NR

∑
k=1

[
NE

∑
j=1

µj
k(t)θ

j
k

NE

∑
j=1

λ jϕ
j
k(t)

]
+

NE

∑
j=1

λ je
j(t)

=
NR

∑
k=1

[
NE

∑
j=1

λ jϕ
j
k(t)

∑NE
j=1 λ jϕ

j
k(t)

θ j
k

NE

∑
j=1

λ jϕ j
k(t)

]
+

NE

∑
j=1

λ je
j(t)

=
NE

∑
j=1

NR

∑
k=1

λ jϕ
j
k(t)θ

j
k +

NE

∑
j=1

λ je
j(t)

=
NE

∑
j=1

(
NR

∑
k=1

λ jy
j(t)+ e j(t)

)
=

NR

∑
j=1

λ jy
j(t) = y(t).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


BOUNDING APPROACH TO PARAMETER ESTIMATION 69

In order to complete the proof it is left to show that the pair {θ,e(·)} belongs to the set
Θver(θl

ver,θu
ver;e

l
ver,e

u
ver). Let us denote

θmin
k = min{θ j

k; j = 1,NE}, (24)
θmax

k = max{θ j
k; j = 1,NE}.

Clearly,
θl

ver,k � θmin
k � θmax

k � θu
ver,k; k = 1,NR.

As uj(·)� 0 and yj(·)� 0 (see (14) and (15)), hence by the definition of µj
k(t) and from

ϕ j
k(tn)� 0; j = 1,NE , k = 1,NR and λ j � 0, j = 1,NE it follows that

µj
k(t)� 0,

NE

∑
j=1

µj
k(t) = 1; k = 1,NR.

Hence, the value θk, k = 1,NR given by (23) is a convex combination of θj
k, j = 1,NE

and due to (24)
θl

ver,k � θmin
k � θk � θmax

k � θu
ver,k; k = 1,NR.

Similarly for any t ∈ ΞM the following holds:

el
ver � emin(t)� e(t)� emax(t)� eu

ver

where

emin(t) = min{e j; j = 1,NE}, (25)
emax(t) = max{ej; j = 1,NE}.

Therefore,
[θ,e(tn)] ∈ Θver(θl

ver,θ
u
ver;e

l
ver,e

u
ver).

The theorem proof has now been completed.
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