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ABSTRACT 

The paper summarises some findings on torsional buckling of thin-walled I-

beam columns. The study is divided into two parts. Firstly, the effect of initial 

deflection on torsional buckling load of thin-walled I-beam column is discussed. 

Starting from the description of kinematics, strain and stress the governing differential 

equations of torsional buckling are derived from the principle of stationary potential 

energy. The critical load of torsional buckling is determined with the aid of the 

perturbation approach. The numerical example concerning simply supported I-beam 
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column is presented and discussed on the grounds of the theory of thin-walled members 

and compared with the result obtained from non-linear 6-parameter theory of shells. 

Secondly, the localisation of local buckling modes is studied. This effect, observed 

during the modelling by shell theory, strongly affects the I-beam columns behaviour 

with relatively wide flanges. 

KEYWORDS: torsional buckling, thin-walled I-beam columns, shell theory, SO(3) 

 

1. INTRODUCTION 

 

It is well-known [1, 2] that the bifurcation point of torsional buckling of thin-

walled members of open, bisymmetric cross-section, similarly to flexural buckling, is 

stable and symmetric. This fact means that the small, initial geometric imperfection in 

the form of initial torsional angle does not cause a decrease of critical load of the 

torsional buckling. This is the opposite to the case of symmetric and unstable or non-

symmetric bifurcation point [3, 4] where the drastic decrease of this load due to the 

imperfection is possible. 

This paper is focused on the comparison between the results concerning 

torsional buckling due to flexural imperfection, obtained from thin-walled theory and 

two-dimensional non-linear shell model. It should be noted that similar studies have 

been already carried out, see for instance [5] or [6]. The latter reference is concerned 

with composite cantilever beams and apart from numerical analysis contains important 

experimental results.  

 The present paper is organised as follows.  

Firstly, within the framework of theory of thin-walled members with open, 

nondeformable cross-section, an influence of initial deflection on the torsional buckling D
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load is investigated and analytical formulas are derived. The obtained theoretical result 

is valid only for linear, elastic material and for the case when the flexural buckling loads 

in both planes are greater than the torsional buckling load.  

Secondly, a short outline of employed shell theory is provided followed by some 

remarks as to FEM convergence. Then the results from the above approaches are 

compared in pre- and post-critical range. Thirdly, we devote some attention to 

localisation of local buckling modes with an emphasis on issues concerning the 

application of compressive load. Finally, some conclusions are drawn at the end of the 

paper. 

 

2. KINEMATICS OF THIN–WALLED I-BEAM COLUMN 

Consider a thin-walled I-beam column axially loaded by two compressive forces 

P (cf. Figure 1). In the undeformed (initial, straight) configuration an arbitrary point of 

the member can be described by the position vector 0r  

 0 x y z= + +r i j k  (1) 

where , ,i j k are the unit vectors of x, y, z axes respectively. 

 

Fig. 1. Compressed thin-walled I-beam column with initial imperfection 

 

In the current configuration, after the deflection ( )u x  in the horizontal plane x–z 

and after the rotation angle ( )z of the cross-section the position vector of web points 

wR  takes the form  

 ( ) ( ) ( )cos cosw u y y z w = + + + +R i j n k  (2) 
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where w denotes the shift of the cross-section along z–axis. In the above n  denotes the 

normal vector to the deformed axis of the member, which is given by the formula 

 
( )

( )

0

0

w

w

y

y

 =
=

 =

j R
n

R
 (3) 

with ( )
( )...

...
d

dz
 = . 

After some algebra the final form of position vector wR  becomes 

 
( )

( ) ( )
2 22 2

1 sin sin
cos

1 1
w

w θ u θ
u y y θ z w y

w u w u

   +    = + + + + −
      + + + +   

R i j k  (4) 

The displacement vector wu  of the web is obtained by subtraction of equation (1) (with 

0x = ) from (4) in the form  

 
( )

( )
( )

( )
0

2 22 2

1 sin sin
cos 1

1 1
w w

w θ u θ
u y y θ w y

w u w u

   +    = − = + + − + −
      + + + +   

u R r i j k (5) 

The points on the middle surface of lower flange in the initial configuration are 

described by equation (1)(1)(1) upon setting 
2

h
y = . In the absence of shear 

deformations at the flange plane, the position vector for the current configuration 

becomes 

 ( )
2

cos cos
2 2

2

w

f

w

h
y

h h
u θ θ z w x

h
y

 
 = 

 = + + + + +
 

 = 
 

a R

R i j n k

a R

 (6) 

where  

 cos sinθ θ= +a j n  (7) 

The displacement vector fu  for the middle surface of flange is obtained as 

follows  

Sformatowano: Angielski (Stany Zjednoczone)
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0 0

2
f f f f f

h
y u v w

 
= − = = = + + 

 
u R r r i j k  (8) 

where , ,f f fu v w  are the components of fu . 

The only nonzero component of Green-Lagrange strain tensor  

 ( )
1

, , , ,
2

ij i j j i k i k jE u u u u= + +  (9) 

is  

 

2 2

33

1

2

f f f

zz z

w u v
E E ε

z z z

      
 =  = + +          

 (10) 

Unfortunately, the obtained explicit formulas are too complicated for the further 

use. Therefore, they are expanded in power series retaining only terms of order 

2 2 2~ ~w u h θ    yielding 

 2 2 21 1
sin cos

2 2 2
z f f f

h
ε w u u θ x θ θ + r θ

 
    = + + − + 

 
 (11) 

where 
1

2
hx =  is the sectional area of a point of the flange middle surface with given x 

coordinate and 

2

2 2

2

h
r x

 
= +  

 
 is a square of distance of that point from the member 

axis. 

Equation (11) is valid for flanges, whereas for web the corresponding formula is 

obtained by setting 
2

h
y→  and 0x =  in (11). 

In the presence of initial geometric imperfection given by some function ( )0u x  

(in horizontal plane), upon the assumption of small strains, the magnitude of 

longitudinal strains zε  after torsional buckling of the column is defined by the following 

formula D
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0

z z zε ε ε= −  (12) 

where 0

zε  is the initial strain being the result of initial deflection ( )0u z , which, based on 

(11), is  

 2

0 0 0

1

2

0

zε w u xu  = + −  (13) 

In the above formula 0w  is the initial shortening of the member axis. Finally, for 

an arbitrary point of the cross-section the following equation for axial strain is obtained 

 ( ) ( )2 2 2 2

0 0

1 1
sin cos

2 2
zε w u u u y θ+x u u θ θ + r θ       = + − + − +  (14) 

where 0w w w= −  is the reduced axial displacement of the member. 

 

3. THE GOVERNING EQUATIONS 

The potential energy iV  of the column made of linear elastic material with 

Young modulus E is  

 2

0 0

1 1

2 2

l l

2

i z d

A

V E ε dAdz GI θ dz= +    (15) 

where l is the length of the member, A denotes the cross-section area, G is the shearing 

modulus and dI  denotes torsion section constant. The second term in the above formula 

is concerned with the free torsion of the column. The work done by axial forces is  

 
0

l

eV P w dz=   (16) 

Substituting (14) into (15) and performing integration over cross-section area A yields 
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( ) ( )

( )

( )

2 4 2 2 4 2 2 2 2

0 0 0

0

2 2 2 2 4 2

0 0 00 0

2 2 2 2

0 0

1 1
2 sin

2 4

1
2 cos cos

4

1

2

l

i x

y

d

V E Aw A u u u u Aw u u u I θ

I u u u θ u θ I θ I θ I w θ

I θ u u GI θ dz




        = + − + + − + +



       + − + + + + +


   + − + 





 (17) 

where 0, ,x yI I I  are the moments of inertia about x and y axes and polar moment of 

inertia respectively, I  is warping section constant and 00I  stands for the second-order 

polar moment of inertia 

 4

00

A

I r dA=  . (18) 

Since the initial state of torsion after loss of torsional stability is of interests, the 

underlined term in (17) is neglected and the sine and cosine functions are expanded as 

sinθ θ , 21
cos 1

2
θ θ − .  

The principle of stationary (total) potential energy i eV V V= −  with respect to the 

reduced axial displacement w  yields  

 ( )2 2 20
0

1 1

2 2

I
w u u θ

A
   = − − − . (19) 

Substitution of (19) into (17) and taking variations of V with respect to u and 

yields the governing set of differential equations of the problem in question 

 

( )

( ) ( ) ( )

20
0

2 2

0 0 0 0

1

2

IV

d x y y

IV

y x y y

I
EI θ P GI θ E I I u θ EI u u θ

A

EI u u P u u Pu E I I u θ EI u θ



  
   + − = − − −   


    − + − = − − − +


 (20) 

The last two terms of right-hand side of both equations express the combination 

of torsional and flexural displacements and the effect of initial deflection. Neglect of 

these terms leads to the well-known equations of torsional buckling and of the axially 

compressed column with initial deflection [7]. 
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4. APPROXIMATED SOLUTION 

The solution of (20) is determined with the aid of small-parameter, which under 

the above assumptions, admits the following form  

 

( ) ( ) ( )

( ) ( ) ( )

2

1 2

1 2

0 1

z z z

u z u z u z

P P P

   





 = + +


= + +


= + +


 (21) 

with  as the small parameter. 

A zero-order approximation leads to  

 ( ) ( )0 0 0

IV

yEI u u P u u Pu − + − = −  (22) 

whereas the first-order to 

 ( ) 20
1 0 1 1 1 0 1 1

IV

d x y y

I
EI θ P GI θ E I I u θ EI u u

A
 

 
   + − = − − − 

 
 (23) 

Assuming that the critical load of torsional buckling crP
 is smaller than flexural 

critical load about y axis – 
y

crP , it is possible to find the solution of (22) for a given 

shape of initial deflection ( )0u z  and the substitute it to (23). 

For a simply supported member with initial deflection  

 ( )0 0 sin
z

u z U
l


=  (24) 

this yields 

 ( )1 0
0

1
sin

1
y

cr

z
u z U

P l

P


=

−

 (25) 

Substitution of (25) into (23) yields linear differential equation with variable 

coefficients  
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4

2 20
1 0 1 0 12

0
0

sin 0

11

x y yIV

d

y
y

cr
cr

I I II z
EI θ P GI θ EU θ

PA l l P
PP



 

 
 

−    
+ − + + =    

     − −  
  

.(26) 

The above equation is solved in an approximated manner with the aid of Galerkin 

method for the first approximation given by 

 ( )1 1 sin
z

z
l


 = . (27) 

Substitution of (27) into (26), multiplication by sin
z

l


 and integration over member 

length yields the formula 

 

2 2

20
0 0 2

0
0

3
0

4
11

x y y

d

y
y

cr
cr

I I II
EI P GI EU

Pl A l P
PP



 

 
 

−     
− − + + =      

       − −  
  

, (28) 

which gives the estimation of  the critical load of torsional buckling 0crP P  . The above 

nonlinear equation was solved using the bisection method.  

It is worth of emphasising that the above reasoning may be easily repeated for 

initial imperfection perpendicular to the x axis which is the major axis of cross section. 

In this case the imperfection is given by 

 ( )0 0 sin
z

v z V
l


=  (29) 

which gives the counterpart of equation (28) in the form 

 

2 2

20
0 0 2

0
0

3
0

4
11

y x y

d

x
x

cr
cr

I I II
EI P GI EV

Pl A l P
PP



 

 
 

−     
− − + + =      

       − −  
  

. (30) 
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As it has been already mentioned, formulas (28) and (30) make sense only if 

flexural buckling loads are greater than torsional buckling load. These loads, for the 

simply supported member in question, may be easily obtained from the well-known 

formulas 

 

22

2 2

2

0 2

0

,
yx yx

cr cr

d

EIEI
P P

l l

EIA
P GI

I l







= =

 
= + 

 

 (31) 

Given these equations, we have examined the variations of critical loads on the flange 

width. Figure 2 depicts the results for data given in Fig. 1. 

 

Fig. 2. Variations of critical loads vs flange width B 

 

In this study we focused our attention to two flange widths 0.2 and 0.4m. As 

indicated in Fig. 2 in the latter case, the torsional buckling load is the smallest while in 

the former this is not a case. This may be alleviated by imposing a vertical imperfection 

0v , initiating thus flexural buckling in the direction perpendicular to x axis where we 

have 0

x

crP P  which solves the problem. Therefore, in the following calculations we 

assumed vertical imperfection 0v  in form given by equation (29). 

Bearing in mind, however, the approximate character of the above formulas, the 

analytical results are deferred to the following section where the evaluated critical load 

is compared with that from nonlinear shell theory. 

 

5. OUTLINE OF SHELL THEORY 
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In the finite element method (FEM) analysis of thin-walled members, several 

approaches may be distinguished. For instance, one may develop an element from 

expressions for the first and second variation of the total energy of the member. This 

approach has been used, among others, in [8], [9] or [10] leading to elements with seven 

degrees of freedom per node. 

In this paper we use another possibility. We treat the thin-walled member as an 

assembly of shell panels modelled by shell finite elements. The fundamentals of the 

shell theory employed here may be found, for instance, in [11][11][6] while numerical 

implementation has been discussed, for example, in [12][12][7], [13][13][8]  [9] and 

[14]. In general, the motion of the irregular shell structure (like, for instance, I-beam 

column) can be described by the displacement vector field ( ) ( )= −u x y x x , where 

Mx  and ( )y x  are position vectors of the undeformed and deformed shell base 

surface, respectively, together with the independent proper orthogonal tensor field ( )Q x  

representing the mean rotary motion of the shell cross sectionsfibres i.e. 

0 , 1, 2,3i i i= =t Qt  – see Figure 3. The fields ( )y x  and ( )Q x  are assumed to be 

continuous during the motion, and on any stationary singular curve M   determining 

an irregularity (fold, intersection, branching, etc.) i.e. ( ) ( ) |  =y x y x , 

( ) ( ) |  =Q x Q x . 

We confine our considerations to hyper-elastic shells for which there exists a 2D strain 

energy density ( , ; )W  ε κ x  of the shell strain vectors , ,  = −ε y Qx  and 

1 Tad ( , ) 

−=κ Q Q . Then the constitutive relations of the shell material are given by 

/W

= n ε , /W

= m κ , where ( )
n x  and ( )

m x  are the internal stress and 

couple resultant vectors, respectively. 

Sformatowano: Styl Tekst podstawowy 2 + Interlinia: 
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When expressed in the weak form, the initial-boundary value problem for the 

branched shell-like structure can be formulated as follows. Given the external resultant 

force and couple vector fields ( )f x  and ( )c x  on \M x , *( )n x  and *( )m x  along 

fM , ( ) f x  and ( ) c x  along the singular curve M  , find a curve 

( ) ( ( ), ( ))=x u x Q xu  on the configuration space 3( , (3) )C M E SO  such that for any 

continuous kinematically admissible virtual vector field ( ) ( ( ), ( ))x v x w xw  the 

following principle of virtual work is satisfied: 

 
\ \

[ ; ] [ ( , , ) , ] ( )

( * * ) ( ) 0 .

f

M M

M

G da da

ds ds

 

  

 

   

 

= +  + − +

− + − + =

 

 

u w n v y w m w f v c w

n v m w f v c w
 (32) 

In (32) it is implicitly assumed that the kinematic boundary conditions 

( ) *( )=u x u x  and ( ) *( )=Q x Q x  are satisfied along the complementary part 

\d fM M M =    of the shell boundary, and the virtual vector fields are kinematically 

admissible if ( ) = 0v x  and ( ) = 0w x  along dM . Approximated spatially by finite 

element method, equation (32) is solved using Newton method. However, due to the 

presence of rotation group SO(3), the configuration space is not a linear. Therefore, 

special techniques are required for interpolation, linearisation and iteration. For more 

details see [12][12][7], [13][13][8] an d [9]or [14].  

It should be stressed that in this theory, the sixth DOF (the so-called drilling 

degree-of-freedom) enters the theory in the natural way. Therefore, without resorting to 

any special techniques or additional assumptions, all elements have six engineering 

degrees of freedom at each node – see Figure 3. This property is crucial in the analysis 

of irregular shell-like structures such as those with branches or intersections, which 

makes these elements a powerful, reliable and well-suited tool for analysis of thin-

walled members.  
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Within this framework, an own computer code (called CAM) was developed 

with, among others, 4–, 9– and 16–node displacement-rotation based C0 elements. 

These elements, denoted by CAMe4, CAMe9 and CAMe16 respectively are used here 

for computations. 

 

Fig. 3. Typical finite element with 6 degrees of freedom on the reference surface   

 

 

6. NUMERICAL EXAMPLES 

6.1. Critical load of torsional buckling 

Consider an axially compressed, simply supported I-beam column as depicted in 

Fig. 1 with flange width 0.2mB = . Following [1], [7] [1, 5], for an ideal I-beam 

column, the torsional buckling load is, according to equation (31)(31)(31)2, 3.34 MN. In 

FEM analysis, due to bisymmetry of the column cross-section and anti-symmetry of the 

buckling mode, only a quarter half of the column was discretised with boundary 

conditions depicted in Fig. 4. In the non-linear stability analysis, the one-parameter 

dead-load of form refP P=  (where 1ref refP q A= = MN is uniformly distributed over 

cross-section) is used. As the imperfection load, the torque 100impfM = Nm is applied at 

the longitudinal axis – see Fig. 4. The equilibrium path of the column with imperfection 

is traced using load control and arc-length control techniques until reaching 

neighbourhood of the primary path. Then, the imperfection load is removed yielding 

jump on the primary path. Next, by using the displacement control technique until 

control displacement u at point j (denoted u(j)), is close to zero, the beam is restored to 

its symmetric configuration at the bifurcation point yielding critical torsional load 

multiplier CR . In order to enforce the torsional buckling all nodes at the longitudinal 

Sformatowano: Do lewej, Wcięcie: Z lewej:  0 cm, Pierwszy
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axis have u and v displacement constrained. The above described technique of finding 

critical load is depicted in Fig. 5. 

 

Fig. 4. Torsional stability of I-beam column, FEM discretisation and loads 

Fig. 5. Equilibrium paths: primary + imperfection and ideal 

 

In Table 1 some of the numerical results obtained are presented. For the 

comparison and verification the Table contains the result obtained with the help of 

Enhanced Assumed Strain element EAS14m1, described in [14][14][10]. The 

discretisations, denoted by (lower flange+web+upper flange)×length, are given for 

whole beam while the number of degrees of freedom is computed for one quarter of the 

beam taken into consideration in FEM calculations. All values in Table 1 were obtained 

with full integration (FI) of element’s matrices. These values are depicted in Figure 6. 

 

Fig. 6. Convergence analysis 

 

As it may be noted CAMe4 elements (filled diamonds) with full integration (FI) 

overestimate values of critical load multiplier and the convergence rate is rather poor. 

This is attributed to the locking phenomenona well known from application of low–

order Lagrange-type elements. In order to alleviate this flaw a reduced integration 

technique may be applied at the expense of, however, the so-called spurious zero-energy 

modes which may pollute or even completely destroy the solution. These facts ruled out 

CAMe4 elements. Table 1 indicates that other elements exhibit faster convergence with 

good accuracy. A deeper inspection into the results, carried out in [9] [12], indicated 

supremacy of CAMe16 elements over CAMe9 in terms of locking and spurious modes. D
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Therefore, for the further research CAMe16 elements in (2+2+2)×20 mesh are used 

which is distinguished by boldface character in Table 1. Figure 5 depicts the obtained 

load-deformation path with the obtained critical load multiplier 3.329CR = . This result 

is confirmed by the value 3.321CR =  obtained with the help of EAS14m1 element. 

In Fig. 5 one configuration in the pre-buckling configuration is selected for 

3.288 =  in order to throw some light on the deformed geometry. Figure 7 reproduces 

depicts ten-times magnified deformation corresponding to 3.288 = . Here 

1.058ju cm−  . 

 

Fig. 7. Ten-times scaled deformation at 3.288 =  (pre-buckling configuration) 

 

Note that the longitudinal axis remains straight which is due to the imposed 

boundary conditions. In addition, the edge distinguished by the dashed line is in the 

form of a single wave. In the well-advanced post-critical configuration, however, as it 

will be shown latter, this will be not a case.  

 

6.2. Influence of initial imperfection on torsional buckling load 

With this preliminary factsthese preliminary facts we are ready to investigate the 

influence of the initial deflection 0v  on the critical load of torsional buckling. Figure 8 

depicts the comparison between analytical results from equation (30) and those from 

nonlinear theory of shells for the column with flange width 0.2B m= . Here due to 

symmetry of the imperfection 0v , FEM calculations were carried out for ½ beam. 

 

Fig. 8. Influence of initial imperfection 0v  on critical load: analytical and FEM results 
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In FEM calculations, five values of amplitudes of the initial deflection 0v  

(applied as shown in Figure 4 in the middle of the beam) are considered. As it may be 

observed, the imposed flexural imperfection causes a drastic decrease of the torsional 

buckling load. Note also very good agreement between the analytical and numerical 

results. The FEM results slightly underestimate the values, which is due to the initial 

differences in assessment of the critical load ( )0 0CRP v =  value (cf. Tab. 1). 

Associated with the decrease of critical load due to initial imperfection 0v  is the 

increase of total deflection i.e. critical deflection CRv  corresponding to the instant of loss 

of stability. Figure 9 depicts the variations of CRv  due to the imposed imperfection 0v . 

The grey dashed line with open diamonds corresponds to classical thin-walled beam 

theory while solid line represents the FEM results.  

 

Fig. 9. Effect of initial imperfection 0v  on critical deflection CRv :  

analytical and FEM results 

 

As it is may be observedseen, the above results are in good agreement. Starting 

with zero imperfection (vertical axis) we arrive precisely at the critical load multiplier 

3.329CR =  in FEM case or 3.343CR =  in analytical case. Then, with the growth of 

the imposed imperfection  we note the decrease of critical load with simultaneous 

growth of critical deflection CRv . The points on the upper end of each branch mark the 

computed critical deflection CRv . These values are connected by the thin dashed line in 

order to portrait the trend of the phenomenon. For instance, for 0 0.5v cm=  the critical 

deflection CRv  is found to be 1.04 cm (which gives 1.04 0.5 0.54 cm− = increment) 
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whereas in case of 0 5.0v cm=  the computed CRv  is 9.16 cm (9.16 5.0 4.16 cm− =  

increment). 

In order to give some idea about the influence of 0v  on total deflections, in Fig. 

10 displacements of the right (R) and left (L) edge of the bottom flange along the 

column axis are depicted. Due to symmetry only half of the beam is shown.  

 

Fig. 10. Deformation of the lower flange (FEM): edge displacements along z-axis 

 

The “snap-shot” of the deformed lower flange was taken in the pre-buckling 

state. In connection with Fig. 7 and Fig. 10 it is seen that the edges deform, taking the 

shape of single wave. It has been mentioned, however, that in well-advanced post-

critical state this is no longer a case. In order to throw some light on that issue, and to 

address the post-critical analysis, in Fig. 11 a comparison of load-deformation paths 

from analytical and FEM studies is presented.  

 

Fig. 11. Post-critical equilibrium paths after torsional buckling 

 

As expected, the obtained bifurcation point is stable and symmetric. Note also 

that analytical formula gives reasonable approximation for 1  . Above this threshold, 

the discrepancies between the results attain unacceptable values leading to the 

conclusion that more terms should be added in order to ensure better accuracy of 

analytical solution at this range of post-critical analysis.  

To picture the deformation shape at this stage of analysis, one configuration is 

chosen in Fig. 11. The deformed not-scaled mesh is depicted some representative 

configurations are shown in Fig. 12. 
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Fig. 12. Deformed beam in post-critical range 

 

For 6.135 = , the angle of torsion of the middle cross-section is, according to 

Fig.1011, around 2 radians. The edges of lower and upper flange take complicated 

forms and we may note some local modes of instability of the flanges. For the sake of 

comparison, in Fig. 12 another configuration for 11.25 =  is included in Fig. 12 , 

which has not its representation in Fig. 11. At this stage the shape of flanges is even 

more complicated and the local forms are clearly pronounced with local collapse of 

flanges and changes of curvature. 

 

6.3. Effect of change of flange width on critical load 

Further analysis deals with the influence of flange width for on the torsional 

buckling load. The widths are taken from range (0.15 0.34)B m=  . For given value of 

width and for variable initial deflection amplitude the buckling load is computed using 

(30). The results are depicted in Fig. 13. 

 

Fig. 13. Critical load vs initial imperfection for different flange widths 

 

Figure 13 brings up interesting observation namely, for some values of flange 

width, the initial imperfection causes the decrease of critical load which is consistent 

with the trend from Fig 9. There is however a threshold above which the critical load 

grows with the increase of imperfection. This may be attributed to the paradox of 

torsional buckling – see, for example, [15][15][11], [16][16][12]. or . 
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6.4. Localisation of the local buckling mode 

We now turn our attention to the problem of localisation of the local mode of 

buckling. Consider an I-beam column as in Figure 14 with 0.4B m= , discretised as in 

previous section i.e. CAMe16 (4+4+4)×40 elements for whole beam. In this case, 

torsional buckling load according to (31)2 is 8.54 MN. Suppose that for 0.5z L=  there 

is a segment of length ( 20 )
20

Lc cm= =  (two rows of elements) which has reduced 

thickness of upper and lower flanges as shown in Fig. 14. Let us define parameter 

redt

t
 =  describing ratio of reduced thickness. Exploiting the fact that the column has 

three symmetry planes, the calculations in this part of the study are carried out for 1
8

 

of the beam. 

 

Fig. 14. I-beam column with notch – buckling mode localisation 

 

Two different compressive loads were considered, namely: uniformly distributed 

load (as inin the  previous sections) and two point forces applied at the intersection of 

the web with flanges. Fig. 15 and Fig. 16 depict post-critical equilibrium paths. 

 

Fig. 15. Buckling mode localisation – equilibrium path for uniformly distributed load  

 

Fig. 16. Buckling mode localisation – equilibrium path for concentrated load  

 

On examining Fig. 15 and 16 we may note that way in which load is applied has 

significant influence on qualitative and quantitative character of results. While in case 
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of concentrated loads the computed vertical displacement of flanges are of the same 

sign and equilibrium paths share the same shape, for uniformly distributed load two 

cases of   have different signs than remaining results. This discrepanciesThese 

discrepancies are even more pronounced if we examine deformation of the flange. Fig. 

17 and 18 show vertical displacement of the flange edge along column length. 

 

Fig. 17. Buckling mode localisation – vertical displacement of flange edge for 

uniformly distributed load 

 

Fig. 18. Buckling mode localisation – vertical displacement of flange edge for 

concentrated load 

 

Bold line in Fig. 17 and 18 corresponds to 1 =  case i.e. without thickness 

reduction. Clearly, the deformations in both cases under consideration are different. In 

the first case – uniformly distributed load - there may be observed a phase lag for 

0.91 =  and 0.94 =  with simultaneous change of sign, which corresponds exactly to 

Fig. 15. The amplitudes for 1 =  decrease as z approaches / 2L  while for reduced 

thickness they have tendency to grow. In case of concentrated load the obtained shapes 

have the same qualitative character with growing amplitudes as / 2z L→ . Here, for 

1.00 = , the amplitude is constant along the beam. 

In order to summarise the results let us define two coefficients The first is the 

amplitude coefficient max

min

v

v
 =  which describes ratio of maximal computed vertical 

displacement maxv  over minimal amplitude of deformation wave along flange edge minv  
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for given thickness reduction  The second coefficient is ( )0 1  = = . Figure 19 

shows ratio 0/   versus   with the latter value expressed in %. 

Fig. 19. Buckling mode localisation – ratio of amplitudes of the local buckling 0/   vs 

thickness reduction   coefficient 

 

The results from this section indicate in conjunction with analytical value of 

torsional buckling load i.e. 8.54 MN (31), that local buckling of flange occurs before 

torsional buckling. This observation is independent of kind of applied load. For 

example, if uniformly distributed load is applied with 0.99 = , the buckling occurs at 

c.a. 5.9 MN. What we deal with here, therefore, is compound buckling triggered by 

local instability on flange part. 

 

CONCLUSIONS 

 

The torsional buckling phenomenon of thin-walled I-beam columns was studied. 

Two different approaches: one-dimensional column and the six-parameter non-linear 

shell model are investigated. An effect of initial curvature of axis of the column on 

torsional load has been studied. The obtained results show the decrease of critical load 

with the increase of initial imperfection. In addition, the critical deflection has been 

evaluated. Both models are in very good agreement. Post-critical analysis shows that 

one-dimensional model, to some extent, gives acceptable results. In well-advanced 

range of displacements however, the discrepancies between two models grow indicating 

that some modifications of the one dimensional model are necessary.  

Some differences are noticed in case of the I-beam columns with relatively wide 

width. This fact enables us to formulate two main conclusions.  
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Firstly, the FEM model reveals sensitivity to the way at which the external load 

is applied. It follows from the FEM discretisation of the shell I-column since the load, 

as all of the FEM functions, must be defined in nodes of the mesh. It gives the rise to 

the question how to find an appropriate equivalence between concentrated load from 

one-dimensional model and load in FEM setting. In the light of the above study the 

results may differ qualitatively and quantitatively.  

Secondly, some local effects on the buckling modes are observed. While for 

columns with narrow flanges the loss of stability occurs in global way, the local effects 

have considerable influence on stability of columns with wide flanges. Therefore, in the 

former case the analytical and FEM solutions agree while in the latter one should expect 

some discrepancies. These facts indicate that behaviour of beams with wide flanges 

should be understood as a shell rather than rod structure. This observation has valuable 

meaning in the design of compressed elements in which the local buckling plays the 

crucial role. In particular, in the light of the findings form the last section, a conclusion 

may be drawn that in case of wide flanges the assumption as to nondeformable cross-

section in not satisfied. 
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Fig. 1. Compressed thin-walled I-column with initial imperfection 
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Fig. 2. Variations of critical loads on flange width B 
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Fig. 3. Typical finite element with 6 degrees of freedom on the reference surface M 
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Fig. 4. Torsional stability of I-beam, FEM discretisation, load and boundary conditions 
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Fig. 5. Equilibrium paths: primary + imperfection and ideal  
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Fig. 6. Convergence analysis 
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Fig. 7. Ten-times scaled deformation at 3.288 =  (pre-buckling configuration) 
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Fig. 8. Influence of initial imperfection 0v  on critical load: analytical and FEM results 
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Fig. 9. Influence of initial imperfection 0v  on critical deflection CRv :  

analytical and FEM results 
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Fig. 10. Deformation of the lower flange (FEM): edge displacements along z-axis 
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Fig. 11. Post-critical equilibrium paths after torsional buckling 
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Fig. 12. Deformed beam in post-critical regime 
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Fig. 13. Critical load vs initial imperfection for different flange widths 
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Fig. 14. I-beam column with notch – buckling mode localisation 
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Fig. 15. Buckling mode localisation – equilibrium path for uniformly distributed load  
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Fig. 16. Buckling mode  localisation – equilibrium path for concentrated load  

. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 

Fig. 17. Buckling mode localisation – vertical displacement of flange edge for uniformly 

distributed load 
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Fig. 18. Buckling mode localisation – vertical displacement of flange edge for concentrated 

load 
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Fig. 19. Buckling mode localisation – ratio of amplitudes of the local buckling vs thickness 

reduction   coefficient 
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Table 1. Convergence study 

Element Discretisation 

(elements) for 

whole beam 

Number of 

degrees of 

freedom for ¼ 

of the beam 

Critical torsional load 

CRP  MN 

CAMe4(FI) (2+2+2)×20 

(4+4+4)×40 

(6+6+6)×60 

(8+8+8)×80 

264 

882 

1860 

3198 

5.105 

3.775 

3.529 

3.442 

CAMe9(FI) (2+2+2)×20 

(4+4+4)×40 

882 

3198 

3.337 

3.330 

CAMe16(FI) (2+2+2)×20 1860 3.329 

EAS14m1 (2+2+2)×20 

(4+4+4)×40 

(6+6+6)×60 

(8+8+8)×80 

264 

882 

1860 

3198 

3.36976 

3.33692 

3.325 

3.322 

Szymczak [1]  3.343 

Thimoshenko and Gere [5]  3.34 
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